It is vital as a chemistry student that you know the formulas of common substances. Here is a list of substances whose formulas you should know at all times.

Elements					Compounds	
Al	aluminium	Mg	magnesium	NH₃	ammoni <u>a</u>	
Ar	argon	Hg	mercury	CaCO ₃	calcium carbonate	
Br ₂	bromine	Mg	magnesium	CO	carbon monoxide	
Са	calcium	Ne	neon	CO ₂	carbon dioxide	
С	carbon	Ni	nickel	CuSO ₄	copper sulfate	
Cl ₂	chlorine	N_2	nitrogen	HCl	hydrochloric acid	
Cr	chromium	O ₂	oxygen	CH ₄	methane	
Со	cobalt	P ₄	phosphorus	HNO ₃	nitric acid	
Cu	copper	Pt	platinum	NO	nitrogen monoxide	
F ₂	fluorine	K	potassium	NO ₂	nitrogen dioxide	
Au	gold	Si	silicon	NaCl	sodium chloride	
He	helium	Ag	silver	NaOH	sodium hydroxide	
H ₂	hydrogen	Na	sodium	SO ₂	sulfur dioxide	
I_2	iodine	S ₈	sulfur	H_2SO_4	sulfuric acid	
Fe	iron	Sn	tin	H ₂ O	water	
Pb	lead	Ti	titanium			
Li	lithium	Zn	zinc			

You also need to be able to work out the formula of ionic compounds. To do this you need to know the charges on ions. Many of these can be worked out from the position in the Periodic Table or from the number in roman numerals after a name (e.g. iron (III) sulfate contains Fe^{3+} ions; iron (II) sulfate contains Fe^{2+} ions).

+1	H ⁺ hydrogen ions
	NH₄⁺ ammon <u>ium</u> ions
	Group 1 ions (e.g. Na⁺ sodium ions)
+2	Group 2 ions (e.g. Ca ²⁺ calcium ions)
+3	Group 3 ions (e.g. Al ³⁺ aluminium ions)

-1	NO_3^- nitrate ions
	OH⁻ hydroxide ions
	Group 7 ions (e.g. Br ⁻ bromide ions)
-2	CO_3^{2-} carbonate ions SO_4^{2-} sulfate ions
-3	PO_4^{3-} phosphate ions

The formula is then worked out by balancing the number of + and – charges. For example:

sodium oxide	contains Na ⁺ and O ^{2–} ions	need ions in ratio: $2Na^+$: $1O^{2-}$	formula = Na ₂ O
aluminium bromide	contains Al^{3+} and Br^{-} ions	need ions in ratio: 1Al ³⁺ : 3Br ⁻	formula = $AlBr_3$
calcium hydroxide	contains Ca^{2+} and OH^{-} ions	need ions in ratio: $1Ca^{2+}: 2OH^{-}$	formula = Ca(OH) ₂
magnesium nitrate	contains Mg^{2+} and NO_3^- ions	need ions in ratio: $1Mg^{2+}$: $2NO_3^{-}$	formula = $Mg(NO_3)_2$
iron(III) sulfate	contains Fe^{3+} and $\mathrm{SO_4}^{2-}$ ions	need ions in ratio: $2Fe^{3+}$: $3SO_4^{2-}$	formula = $Fe_2(SO_4)_3$