

STARTER FOR 1044

1.1.3. Concentration and dilution

Place the answers to calculations **1** - **9** in order from left to right in the grid below to find which two solutions *A* - *P* react together. (1 mark for each correct answer)

Solution A 〈	2	\searrow	9	\searrow	1	\searrow	1	$\sqrt{4}$	\searrow	\bigcirc	$\frac{1}{2}$	\searrow	1	Solution I	\geq
Solution B〈	1	$\stackrel{2}{\searrow}$	1	$\left\langle \right\rangle \frac{6}{3} \left\langle \right\rangle$	5	/ \	8 >	5	\ \ - -	8	$\frac{6}{3}$	$\frac{2}{2}$	5	Solution J	\supset
Solution C 〈	2	$\stackrel{6}{\searrow}$	2	$\left\langle \right\rangle $	1	/ \	2 >-	9	$\stackrel{5}{\searrow}$	\bigcirc	$\frac{1}{2}$	$\sum_{i=1}^{1}$	1	Solution K	\geq
Solution D〈	5	$\stackrel{\cancel{3}}{\searrow}$	8	$\stackrel{9}{\searrow}$	6	/ \	8 >	5 5 7	$\left\langle \begin{array}{c} 0 \\ 1 \end{array} \right\rangle$	$\left(1\right)$	$\frac{6}{5}$	$\left\langle \frac{2}{2} \right\rangle$	5	Solution L	\geq
Solution E \langle	1	$\stackrel{\circ}{\searrow}$	_1	$\rangle_{1}^{\prime}\langle$	4	$\left\langle \frac{3}{2} \right\rangle$	4 >	− 9	$\stackrel{2}{\stackrel{2}{\longrightarrow}}$	$ \overline{7} $	$\frac{5}{4}$	$\left\langle \frac{3}{2} \right\rangle$	5	Solution M	\supset
Solution F \langle	2	$\stackrel{2}{\searrow}$	6	$\searrow \frac{1}{2}$	5	$\left\langle \frac{2}{8} \right\rangle$	3 >	7	$\stackrel{9}{\searrow}$	$\left(1\right)$	$\frac{1}{9}$	\rightarrow	1	Solution N	\supset
Solution G〈	8	$\left\langle \frac{4}{2} \right\langle$	\bigcirc	$\stackrel{2}{\searrow}$	3	\rangle_{4}°	1 >	4	$\stackrel{3}{\searrow}$	3	<u> </u>	$\left\langle \frac{8}{2} \right\rangle$	1	Solution O	\supset
Solution H 〈	6	$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$	5 \	$\left\langle \frac{2}{7} \right\langle$	′ 9 }—⟨	$\left\langle \frac{4}{1}\right\rangle$	7 >	$\frac{3}{4}$ 0	$\stackrel{2}{\searrow}$	9	$\frac{8}{4}$ $\frac{7}{7}$	$\left\langle \frac{2}{9} \right\rangle$	5	Solution P	\geq

- 1. How many moles of NaCl must be dissolved in 0.5 dm³ of water to make a 4 mol dm⁻³ solution.
- 2. How many moles of NaOH must be dissolved in 25,000 cm³ of water in order to make a solution with a concentration of 0.8 mol dm⁻³?
- **3.** What volume of water in dm³ must 8 moles of NaHCO₃ be dissolved in to make a solution with a concentration of 0.25 mol dm⁻³?
- **4.** What volume of water in cm³ must 3 moles of KMnO₄ be dissolved in, in order to make a solution with a concentration of 4 mol dm⁻³?
- **5.** A technician found that 2000 cm³ of a 4 mol dm⁻³ solution of copper sulphate was needed for the reaction to go to completion. How many moles of copper sulphate reacted?
- **6.** A student needs to add 8.75×10^{-3} moles of NaOH to neutralise the acid in his sample. How many cm³ of a 0.35 mol dm⁻³ solution should he add?
- **7.** A chemist wants to dilute a stock solution of 10 mol dm⁻³ NaOH to make a solution with a concentration of 1 mol dm⁻³. What volume of water must be added to 100 cm³ of the 10 mol dm⁻³ solution?
- **8.** Lucy wants to make up a solution with a concentration of 2 mol dm⁻³. What volume of water in dm³ must she add to 500 cm³ of 6 mol dm⁻³ stock solution?
- **9.** Alex must add what volume of water in cm³ to 45 cm³ of a 9 mol dm⁻³ solution of H₂SO₄ to make a 1.5 mol dm⁻³ solution?

Which two solutions need to be mixed in order to get a reaction?

Chapter 1: Quantitative chemistry answers

1.1. The mole

1.1.1. Moles and maths

- **1.** 43.7
- **2.** 69.8
- **3.** 0.688
- **4.** 0.683
- **5.** 0.25

1.1.2. Moles and concentration

a → 2	6	5	4	9	8	1	7	3 d ↓
9	4	c → 7	b ↓ 1	3	6	8	2	5
3	1	8	7	2	e ↓ 5	6	4	9
7	8	2	6	1	3	9	5	4
f ↓ 1	5	4	g → 8	7	9	2	3	6
6	3	9	5	4	2	7	8	1
4	7	6	2	5	1	3	9	8
8	2	3	9	h → 6	4	5	1	7
5	9	1	3	8	7	i → 4	6	2

1.1.3. Concentration and dilution

