

STARTER FOR 10...

1.1.3. Concentration and dilution

Place the answers to calculations 1 - 9 in order from left to right in the grid below to find which two solutions A - P react together.
(1 mark for each correct answer)

1. How many moles of NaCl must be dissolved in $0.5 \mathrm{dm}^{3}$ of water to make a $4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution.
2. How many moles of NaOH must be dissolved in $25,000 \mathrm{~cm}^{3}$ of water in order to make a solution with a concentration of $0.8 \mathrm{~mol} \mathrm{dm}^{-3}$?
3. What volume of water in dm^{3} must 8 moles of NaHCO_{3} be dissolved in to make a solution with a concentration of $0.25 \mathrm{~mol} \mathrm{dm}^{-3}$?
4. What volume of water in cm^{3} must 3 moles of KMnO_{4} be dissolved in, in order to make a solution with a concentration of $4 \mathrm{~mol} \mathrm{dm}{ }^{-3}$?
5. A technician found that $2000 \mathrm{~cm}^{3}$ of a $4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of copper sulphate was needed for the reaction to go to completion. How many moles of copper sulphate reacted?
6. A student needs to add 8.75×10^{-3} moles of NaOH to neutralise the acid in his sample. How many cm^{3} of a $0.35 \mathrm{~mol} \mathrm{dm}^{-3}$ solution should he add?
7. A chemist wants to dilute a stock solution of $10 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ to make a solution with a concentration of $1 \mathrm{~mol} \mathrm{dm}^{-3}$. What volume of water must be added to $100 \mathrm{~cm}^{3}$ of the $10 \mathrm{~mol} \mathrm{dm}^{-3}$ solution?
8. Lucy wants to make up a solution with a concentration of $2 \mathrm{~mol} \mathrm{dm}^{-3}$. What volume of water in dm^{3} must she add to $500 \mathrm{~cm}^{3}$ of $6 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ stock solution?
9. Alex must add what volume of water in cm^{3} to $45 \mathrm{~cm}^{3}$ of a 9 mol dm -3 solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to make a $1.5 \mathrm{~mol} \mathrm{dm}^{-3}$ solution?

Which two solutions need to be mixed in order to get a reaction?

STARTER FOR 10...

Chapter 1: Quantitative chemistry answers

1.1. The mole

1.1.1. Moles and maths

1. 43.7
2. 69.8
3. 0.688
4. 0.683
5. 0.25

1.1.2. Moles and concentration

$\mathrm{a} \rightarrow$ 2	6	5	$\mathbf{4}$	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{1}$	$\mathbf{7}$	$\mathrm{~d} \downarrow$
$\mathbf{9}$	4	$\mathrm{c} \rightarrow$ 7	$\mathrm{b} \downarrow$ 1	$\mathbf{3}$	6	$\mathbf{8}$	$\mathbf{2}$	5
$\mathbf{3}$	$\mathbf{1}$	$\mathbf{8}$	$\mathbf{7}$	$\mathbf{2}$	$\mathrm{e} \downarrow$ 5	6	$\mathbf{4}$	9
$\mathbf{7}$	$\mathbf{8}$	$\mathbf{2}$	$\mathbf{6}$	1	3	$\mathbf{9}$	5	$\mathbf{4}$
$\mathrm{f} \downarrow$ 1	5	$\mathbf{4}$	$\mathrm{~g} \rightarrow$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{9}$	$\mathbf{2}$	$\mathbf{3}$
6	$\mathbf{3}$	$\mathbf{9}$	5	$\mathbf{4}$	$\mathbf{2}$	$\mathbf{7}$	$\mathbf{8}$	1
$\mathbf{4}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{2}$	5	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{9}$	$\mathbf{8}$
$\mathbf{8}$	2	$\mathbf{3}$	$\mathbf{9}$	$\mathrm{h} \rightarrow$ 6	$\mathbf{4}$	5	1	$\mathbf{7}$
5	$\mathbf{9}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{8}$	$\mathbf{7}$	$\mathrm{i} \rightarrow$	6	2

1.1.3. Concentration and dilution

