CALCULATIONS MIXTURE 2

1) Find the M_{r} of the following substances.
a) bromine, Br_{2}
b) magnesium nitrate, $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$

$$
\begin{aligned}
& 2(80)=160 \\
& 24+2(14)+6(16)=148
\end{aligned}
$$

2) a) How many moles in the following:
i) 120 g of oxygen, O_{2}
ii) 2.6 kg of iron oxide, $\mathrm{Fe}_{2} \mathrm{O}_{3}$

$$
\begin{aligned}
& \frac{120}{32}=3.75 \mathrm{~mol} \\
& \frac{2600}{160}=16.25 \mathrm{~mol}
\end{aligned}
$$

b) What is the mass of 0.015 moles of ammonia, NH_{3} ? $17 \times 0.015=0.255 \mathrm{~g}$
3) What mass of oxygen reacts with 3.6 g of magnesium to form $2 \mathrm{Mg}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MgO}$ magnesium oxide?

$$
\begin{aligned}
& \text { moles } \mathrm{Mg}=\frac{3.6}{24}=0.150 \mathrm{~mol} \\
& \text { moles } \mathrm{O}_{2}=\frac{0.150}{2}=0.075 \mathrm{~mol} \\
& \text { mass } \mathrm{O}_{2}=32 \times 0.075=2.40 \mathrm{~g}
\end{aligned}
$$

4) What mass of bromine reacts with 16.2 g of aluminium?

$$
2 \mathrm{Al}+3 \mathrm{Br}_{2} \rightarrow 2 \mathrm{AlBr}_{3}
$$

$$
\begin{aligned}
& \text { moles } \mathrm{Al}=\frac{16.2}{27}=0.60 \mathrm{~mol} \\
& \text { moles } \mathrm{Br}_{2}=0.60 \times \frac{3}{2}=0.90 \mathrm{~mol} \\
& \text { mass } \mathrm{Br}_{2}=160 \times 0.90=144 \mathrm{~g}
\end{aligned}
$$

5) a) What is the maximum mass of tungsten that can be formed 200 g of tungsten oxide?

$$
\begin{aligned}
& \text { moles } \mathrm{WO}_{3}=\frac{200}{232}=0.86 \mathrm{~mol} \\
& \text { moles } W=0.86 \mathrm{~mol} \\
& \text { mass } W=184 \times 0.86=159 \mathrm{~g}
\end{aligned}
$$

b) In a reaction, 115 g of tungsten was formed from 200 g of tungsten oxide. Calculate the percentage yield.

$$
\% \text { yield }=\frac{115}{159} \times 100=72.3 \%
$$

6) Calculate the percentage atom economy to form chlorine in this $2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2}+2 \mathrm{NaOH}$ reaction.

$\%$ atom economy $=\frac{71}{2(58.5)+2(18)} \times 100=46.4 \%$
7) Calculate the percentage atom economy to form the fertiliser $2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$ ammonium sulfate in this reaction.

$$
\% \text { atom economy }=100 \%
$$

8) 7.8 g of potassium (K) reacts with 1.6 g of oxygen $\left(\mathrm{O}_{2}\right)$. Find the simplest molar ratio in which potassium reacts with oxygen.

$$
\begin{aligned}
& \text { Moles of } \mathrm{K}=\frac{7.8}{39}=0.20 \mathrm{~mol} \quad \text { Moles of } \mathrm{O}_{2}=\frac{1.6}{32}=0.05 \mathrm{~mol} \\
& \text { Reacting ratio } \mathrm{K}: \mathrm{O}_{2}=0.20: 0.05=\frac{0.20}{0.05}: \frac{0.05}{0.05}=4: 1 \\
& \therefore 4 \mathrm{~K}+\mathrm{O}_{2} \rightarrow
\end{aligned}
$$

9) 1.7 g of phosphine $\left(\mathrm{PH}_{3}\right)$ reacts with 3.2 g of oxygen $\left(\mathrm{O}_{2}\right)$ to form 3.55 g of phosphorus oxide $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ and 1.35 g of water $\left(\mathrm{H}_{2} \mathrm{O}\right)$. By finding the moles of each substance taking part in the reaction, derive the balanced equation for the reaction.

$$
\begin{array}{ll}
\text { Moles of } \mathrm{PH}_{3}=\frac{1.7}{34}=0.050 \mathrm{~mol} & \text { Moles of } \mathrm{P}_{2} \mathrm{O}_{5}=\frac{3.55}{142}=0.025 \mathrm{~mol} \\
\text { Moles of } \mathrm{O}_{2}=\frac{3.2}{32}=0.100 \mathrm{~mol} & \text { Moles of } \mathrm{H}_{2} \mathrm{O}=\frac{1.35}{18}=0.075 \mathrm{~mol} \\
\text { Reacting ratio } \mathrm{PH}_{3}: \mathrm{O}_{2}: \mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{H}_{2} \mathrm{O}=0.050: 0.100: 0.025: 0.075 \\
=\frac{0.050}{0.025}: \frac{0.100}{0.025}: \frac{0.025}{0.025}: \frac{0.075}{0.025}=2: 4: 1: 3 \\
\therefore 2 \mathrm{PH}_{3}+4 \mathrm{O}_{2} \rightarrow \mathrm{P}_{2} \mathrm{O}_{5}+3 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

10) 3.74 g of hydrated copper sulfate decompose to form 2.39 g of

$$
\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O} \rightarrow \mathrm{CuSO}_{4}+\mathrm{xH}_{2} \mathrm{O}
$$ anhydrous copper sulfate on heating. Calculate the value of x.

$$
\begin{aligned}
& \text { moles } \mathrm{CuSO}_{4}=\frac{2.39}{159.5}=0.0150 \mathrm{~mol} \\
& \text { mass } \mathrm{H}_{2} \mathrm{O}=3.74-2.39=1.35 \mathrm{~g} \\
& \text { moles } \mathrm{H}_{2} \mathrm{O}=\frac{1.35}{18}=0.075 \mathrm{~mol}
\end{aligned}
$$

$$
\text { Ratio of moles } \mathrm{CuSO}_{4}: \mathrm{H}_{2} \mathrm{O}=0.0150: 0.0750=\frac{0.0150}{0.0150} \quad \frac{0.0750}{0.0150}=1: 5
$$

$$
\therefore x=5 \text { (nearest whole number) }
$$

Area	Strength	To develop	Area	Strength	To develop	Area
Done with care and thoroughness			Can convert units			
Shows suitable working			Which numbers are part of formula			
Does not round too much		Can work out M_{r}				
Can use sig figs			Can equation to find reacting moles			
Gives units			Work out moles from mass			

