

CALCULATIONS MIXTURE 2

1) Find the M_r of the following substances.

a) bromine, Br ₂	2(80) = 160
b) magnesium nitrate, Mg(NO ₃) ₂	24 + 2(14) + 6(16) = 148

- 2) a) How many moles in the following:
 - i) 120 g of oxygen, O₂ ii) 2.6 kg of iron oxide, Fe₂O₃ $\frac{120}{32} = 3.75 \text{ mol}$ $\frac{2600}{160} = 16.25 \text{ mol}$
 - b) What is the mass of 0.015 moles of ammonia, NH_3 ? 17 x 0.015 = 0.255 g
- 3) What mass of oxygen reacts with 3.6 g of magnesium to form $2Mg + O_2 \rightarrow 2MgO$ magnesium oxide?

moles Mg = $\frac{3.6}{24}$ = 0.150 mol moles O₂ = $\frac{0.150}{2}$ = 0.075 mol mass O₂ = 32 x 0.075 = 2.40 g

4) What mass of bromine reacts with 16.2 g of aluminium? $2AI + 3Br_2 \rightarrow 2AIBr_3$

moles Al = $\frac{16.2}{27}$ = 0.60 mol moles Br₂ = 0.60 x $\frac{3}{2}$ = 0.90 mol mass Br₂ = 160 x 0.90 = 144 g

5) a) What is the maximum mass of tungsten that can be formed $WO_3 + 3H_2 \rightarrow W + 3H_2O_{200}$ g of tungsten oxide?

moles WO₃ = $\frac{200}{232}$ = 0.86 mol moles W = 0.86 mol mass W = 184 x 0.86 = 159 g

b) In a reaction, 115 g of tungsten was formed from 200 g of tungsten oxide. Calculate the percentage yield.

% yield = $\frac{115}{159}$ x 100 = 72.3%

6) Calculate the percentage atom economy to form chlorine in this $2NaCl + 2H_2O \rightarrow Cl_2 + H_2 + 2NaOH$ reaction.

```
2NaCl + 2H_2O \rightarrow \underline{Cl_2} + H_2 + 2NaOH
Mr 58.5 18 71

Mass 2(58.5)g 2(18)g 71g

% atom economy = \frac{71}{2(58.5)+2(18)} x 100 = 46.4%
```

7) Calculate the percentage atom economy to form the fertiliser ammonium sulfate in this reaction.

 $2NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$

% atom economy = 100%

8) 7.8 g of potassium (K) reacts with 1.6 g of oxygen (O₂). Find the simplest molar ratio in which potassium reacts with oxygen.

Moles of K = $\frac{7.8}{39}$ = 0.20 molMoles of O2 = $\frac{1.6}{32}$ = 0.05 molReacting ratioK : O2 = 0.20 : 0.05 = $\frac{0.20}{0.05}$: $\frac{0.05}{0.05}$ = 4 : 1 \therefore 4 K + O2 \rightarrow

9) 1.7 g of phosphine (PH₃) reacts with 3.2 g of oxygen (O₂) to form 3.55 g of phosphorus oxide (P₂O₅) and 1.35 g of water (H₂O). By finding the moles of each substance taking part in the reaction, derive the balanced equation for the reaction.

Moles of $PH_3 = \frac{1.7}{34} = 0.050 \text{ mol}$ Moles of $P_2O_5 = \frac{3.55}{142} = 0.025 \text{ mol}$ Moles of $O_2 = \frac{3.2}{32} = 0.100 \text{ mol}$ Moles of $H_2O = \frac{1.35}{18} = 0.075 \text{ mol}$ Reacting ratio $PH_3 : O_2 : P_2O_5 : H_2O = 0.050 : 0.100 : 0.025 : 0.075$

$$= \frac{0.050}{0.025} : \frac{0.100}{0.025} : \frac{0.025}{0.025} : \frac{0.075}{0.025} = 2 : 4 : 1 : 3$$

$$\therefore 2PH_3 + 4O_2 \rightarrow P_2O_5 + 3H_2O$$

10) 3.74 g of hydrated copper sulfate decompose to form 2.39 g of $CuSO_4.xH_2O \rightarrow CuSO_4 + xH_2O$ anhydrous copper sulfate on heating. Calculate the value of *x*.

moles CuSO₄ = $\frac{2.39}{159.5}$ = 0.0150 mol mass H₂O = 3.74 - 2.39 = 1.35 g

moles $H_2O = \frac{1.35}{18} = 0.075$ mol

Ratio of moles $CuSO_4 : H_2O = 0.0150 : 0.0750 = \frac{0.0150}{0.0150} \frac{0.0750}{0.0150} = 1 : 5$

:. x = 5 (nearest whole number)

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can convert units			Use equation to find reacting moles		
Shows suitable working			Which numbers are part of formula			Can work out % atom economy		
Does not round too much			Can work out <i>M</i> _r			Can work out % yield		
Can use sig figs			Work out moles from mass			Can deduce reacting ratios		
Gives units			Can work out mass from moles			Water of crystallisation calculations		