CALCULATIONS MIXTURE 3

16 x 0.025 = 0.40 g

 $M_r = 164$ moles $= \frac{5740}{164} = 35$ mol

- 1) a) How many moles in 5.74 kg of calcium nitrate, $Ca(NO_3)_2$.
 - b) What is the mass of 0.025 moles of methane, CH₄?
- 2) a) What maximum mass of ammonia that can be made when $N_2 + 3H_2 \rightarrow 2NH_3$ 11.2 g of nitrogen reacts with an excess of hydrogen?

moles N₂ = $\frac{11.2}{28}$ = 0.40 mol moles NH₃ = 0.40 x 2 = 0.80 mol mass NH₃ = 17 x 0.80 = 13.6 g

b) In a reaction, 3.0 g of ammonia was formed from 11.2 g of nitrogen. Calculate the percentage yield.

% yield = $\frac{3.0}{13.6}$ x 100 = 22.1%

3) Calculate the percentage atom economy to make ethanol $C_6H_{12}O_6$ (C_2H_5OH) by fermentation of glucose.

 $C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$

 $\begin{array}{cc} C_{6}H_{12}O_{6} \rightarrow 2C_{2}H_{5}OH + 2CO_{2}\\ M_{r} & 180 & 46\\ Mass & 180g & 2(46)g \end{array}$

% atom economy = $\frac{2(46)}{180}$ x 100 = 51.1%

4) What volume of hydrogen gas is formed, measured at room $Mg + H_2SO_4 \rightarrow MgSO_4 + H_2$ temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid?

moles Mg = $\frac{0.36}{24}$ = 0.015 mol moles H₂ = 0.015 mol volume H₂ = 24 x 0.015 = 0.36 dm³

5) What volume of oxygen gas reacts with 100 cm³ of propane gas $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ (both gases are at room temperature and pressure)?

volume $O_2 = 5 \times 100 = 500 \text{ cm}^3$

6) 4.2 g of lithium (Li) reacts with 2.8 g of nitrogen (N₂). Find the simplest molar ratio in which lithium reacts with nitrogen.

 Moles of Li = $\frac{4.2}{7}$ = 0.60 mol
 Moles of N₂ = $\frac{2.8}{28}$ = 0.10 mol

 Reacting ratio
 Li : N₂ = 0.60 : 0.10 = 6 : 1

 \therefore 6 Li + N₂ \rightarrow

7) Magnesium reacts with bromine to form magnesium bromide. When 1.2 g of magnesium reacts with 2.0 g of bromine, which is the limiting reagent and what mass of magnesium bromide is formed?
Mg + Br₂ → MgBr₂

moles Mg = $\frac{1.2}{24}$ = 0.050 mol moles Br₂ = $\frac{2.0}{160}$ = 0.0125 mol

Br₂ is limiting reagent and so 0.0125 mol of MgBr₂ is formed

Mass $MgBr_2 = 184 \times 0.0125 = 2.3 g$

8) Find the concentration of sulfuric acid in mol/dm³ and g/dm³ given $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ that 25.0 cm³ of this solution reacts with 26.5 cm³ 0.100 mol/dm³ sodium hydroxide solution in a titration.

moles NaOH = $0.100 x \frac{26.5}{1000}$ = 0.00265 mol moles H₂SO₄ = $\frac{0.00265}{2}$ = 0.001325 mol concentration H₂SO₄ in mol/dm³ = $\frac{0.001325}{\frac{25}{1000}}$ = 0.053 mol/dm³

concentration H_2SO_4 in g/dm³ = 0.053 x 98 = 5.19 g/dm³

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can work out % atom economy			Understands limiting reagents		
Shows suitable working			Can work out % yield			Work out moles for solutions		
Can work out <i>M</i> r			Understands why yield < 100%			Convert mol/dm ³ to g/dm ³		
Work out moles from mass			Work out gas volume from mass or mol			Does not round too much		
Can work out mass from moles			Understands reacting gas volumes			Gives units		
Use equation to find reacting moles			Deduce molar reacting ratio from mass			Which numbers are part of formula		