CALCULATIONS MIXTURE 3 | to the percentage atom economy to make ethanol (C₂H₃OH) by fermentation of glucose. Calculate the percentage atom economy to make ethanol (C₂H₃OH) by fermentation of glucose. What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg + H₂SO₄ → MgSO₄ + H₂ | 1) | a) How many moles in 5.74 kg of calcium nitrate, Ca(NO ₃) ₂ | | | | | | | | | |--|----|--|---|--|--|--|--|--|--|--| | to b) In a reaction, 3.0 g of ammonia was formed from 11.2 g of nitrogen. Calculate the percentage yield. 3) Calculate the percentage atom economy to make ethanol (C₂H₁₂O₆→ 2C₂H₅OH+2CO₂ (C₂H₅OH) by fermentation of glucose. 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg+H₂SO₄→ MgSO₄+H₂ temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? | | | | | | | | | | | | b) In a reaction, 3.0 g of ammonia was formed from 11.2 g of nitrogen. Calculate the percentage yield. 3) Calculate the percentage atom economy to make ethanol (C ₆ H ₁₂ O ₆ → 2C ₂ H ₅ OH + 2CO ₂ (C ₂ H ₅ OH) by fermentation of glucose. 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ with sulfuric acid? | 2) | | $N_2 + 3H_2 \rightarrow 2NH_3$ | | | | | | | | | b) In a reaction, 3.0 g of ammonia was formed from 11.2 g of nitrogen. Calculate the percentage yield. 3) Calculate the percentage atom economy to make ethanol (C ₆ H ₁₂ O ₆ → 2C ₂ H ₅ OH + 2CO ₂ (C ₂ H ₅ OH) by fermentation of glucose. 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? | | | | | | | | | | | | 3) Calculate the percentage atom economy to make ethanol (C ₆ H ₁₂ O ₆ → 2C ₂ H ₅ OH + 2CO ₂) (C ₂ H ₅ OH) by fermentation of glucose. 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? | | | | | | | | | | | | 3) Calculate the percentage atom economy to make ethanol (C ₂ H ₅ OH) by fermentation of glucose. 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ | | b) In a reaction, 3.0 g of ammonia was formed from 11.2 g of nitroger | n. Calculate the percentage yield. | | | | | | | | | What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? What volume of oxygen gas reacts with 100 cm³ of propane gas | 3) | Calculate the percentage atom economy to make ethanol | | | | | | | | | | 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? 5) What volume of oxygen gas reacts with 100 cm³ of propane gas C₃H₈ + 5O₂ → 3CO₂ + 4H₂O | | | | | | | | | | | | temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? 5) What volume of oxygen gas reacts with 100 cm³ of propane gas C ₃ H ₈ + 5O ₂ → 3CO ₂ + 4H ₂ O | | | | | | | | | | | | 5) What volume of oxygen gas reacts with 100 cm ³ of propane gas $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ | 4) | temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? | | | | | | | | | | 5) What volume of oxygen gas reacts with 100 cm ³ of propane gas $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ | | | | | | | | | | | | 5) What volume of oxygen gas reacts with 100 cm ³ of propane gas $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ | 5) | | $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$ | 6) | 4.2 g of lithium (L nitrogen. | i) react | s with 2 | $2.8 \text{ g of nitrogen } (N_2)$. Fin | id the s | implest | molar ratio in which lithi | um rea | cts with | | | |--------------------------|--|---|------------|---|--------------------------|------------|---|----------------|------------|--|--| | | · · | ••••• | • | 7) | 1.2 g of magnesiu | ım reac | ts with | e to form magnesium bro
2.0 g of bromine, which
nesium bromide is forme | is the li | | $Mg + Br_2 \rightarrow MgB$ | r ₂ | 8) | Find the concentration of sulfuric acid in mol/dm 3 and g/dm 3 given that 25.0 cm 3 of this solution reacts with 26.5 cm 3 0.100 mol/dm 3 sodium hydroxide solution in a titration. | | | | | | | | | | | | | ••••• | Area | | Strength | To develop | Area | Strength | To develop | Area | Strength | To develop | | | | one w | ith care and thoroughness | | | Can work out % atom economy | | | Understands limiting reagents | | | | | | Shows | suitable working | | | Can work out % yield | | | Work out moles for solutions | | | | | | | | Understands why yield < 100% | | | Convert mol/dm³ to g/dm³ | | | | | | | | Vork out moles from mass | | | | | | | | | | | | | | | | | Work out gas volume from mass or mol | | | Does not round too much | | | | | | Can wo | rk out mass from moles uation to find reacting moles | | | Work out gas volume from mass or mol Understands reacting gas volumes Deduce molar reacting ratio from mass | | | Does not round too much Gives units Which numbers are part of formula | | | | |