

CALCULATIONS MIXTURE 3

to the percentage atom economy to make ethanol (C₂H₃OH) by fermentation of glucose. Calculate the percentage atom economy to make ethanol (C₂H₃OH) by fermentation of glucose. What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg + H₂SO₄ → MgSO₄ + H₂	1)	a) How many moles in 5.74 kg of calcium nitrate, Ca(NO ₃) ₂								
to b) In a reaction, 3.0 g of ammonia was formed from 11.2 g of nitrogen. Calculate the percentage yield. 3) Calculate the percentage atom economy to make ethanol (C₂H₁₂O₆→ 2C₂H₅OH+2CO₂ (C₂H₅OH) by fermentation of glucose. 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg+H₂SO₄→ MgSO₄+H₂ temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid?										
b) In a reaction, 3.0 g of ammonia was formed from 11.2 g of nitrogen. Calculate the percentage yield. 3) Calculate the percentage atom economy to make ethanol (C ₆ H ₁₂ O ₆ → 2C ₂ H ₅ OH + 2CO ₂ (C ₂ H ₅ OH) by fermentation of glucose. 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ with sulfuric acid?	2)		$N_2 + 3H_2 \rightarrow 2NH_3$							
b) In a reaction, 3.0 g of ammonia was formed from 11.2 g of nitrogen. Calculate the percentage yield. 3) Calculate the percentage atom economy to make ethanol (C ₆ H ₁₂ O ₆ → 2C ₂ H ₅ OH + 2CO ₂ (C ₂ H ₅ OH) by fermentation of glucose. 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid?										
3) Calculate the percentage atom economy to make ethanol (C ₆ H ₁₂ O ₆ → 2C ₂ H ₅ OH + 2CO ₂) (C ₂ H ₅ OH) by fermentation of glucose. 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid?										
3) Calculate the percentage atom economy to make ethanol (C ₂ H ₅ OH) by fermentation of glucose. 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂ Mg + H ₂ SO ₄ → MgSO ₄ + H ₂		b) In a reaction, 3.0 g of ammonia was formed from 11.2 g of nitroger	n. Calculate the percentage yield.							
 What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? What volume of oxygen gas reacts with 100 cm³ of propane gas 	3)	Calculate the percentage atom economy to make ethanol								
 4) What volume of hydrogen gas is formed, measured at room temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? 5) What volume of oxygen gas reacts with 100 cm³ of propane gas C₃H₈ + 5O₂ → 3CO₂ + 4H₂O 										
temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid? 5) What volume of oxygen gas reacts with 100 cm³ of propane gas C ₃ H ₈ + 5O ₂ → 3CO ₂ + 4H ₂ O										
5) What volume of oxygen gas reacts with 100 cm ³ of propane gas $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$	4)	temperature and pressure, when 0.36 g of magnesium reacts with sulfuric acid?								
5) What volume of oxygen gas reacts with 100 cm ³ of propane gas $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$										
5) What volume of oxygen gas reacts with 100 cm ³ of propane gas $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$										
	5)		$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$							

6)	4.2 g of lithium (L nitrogen.	i) react	s with 2	$2.8 \text{ g of nitrogen } (N_2)$. Fin	id the s	implest	molar ratio in which lithi	um rea	cts with		
	· ·										
	•••••	• • • • • • • • • • • • • • • • • • • •									
7)	1.2 g of magnesiu	ım reac	ts with	e to form magnesium bro 2.0 g of bromine, which nesium bromide is forme	is the li		$Mg + Br_2 \rightarrow MgB$	r ₂			
8)	Find the concentration of sulfuric acid in mol/dm 3 and g/dm 3 given that 25.0 cm 3 of this solution reacts with 26.5 cm 3 0.100 mol/dm 3 sodium hydroxide solution in a titration.										
	•••••										
Area		Strength	To develop	Area	Strength	To develop	Area	Strength	To develop		
one w	ith care and thoroughness			Can work out % atom economy			Understands limiting reagents				
Shows	suitable working			Can work out % yield			Work out moles for solutions				
		Understands why yield < 100%			Convert mol/dm³ to g/dm³						
Vork out moles from mass											
				Work out gas volume from mass or mol			Does not round too much				
Can wo	rk out mass from moles uation to find reacting moles			Work out gas volume from mass or mol Understands reacting gas volumes Deduce molar reacting ratio from mass			Does not round too much Gives units Which numbers are part of formula				