1) Sodium reacts with oxygen as shown: $4Na + O_2 \rightarrow 2Na_2O$

Find the M_r of the following substances involved in this reaction.

- a) sodium Na 23
- b) oxygen O_2 2(16) = 32
- c) sodium oxide Na₂O 2(23) + 16 = 62

2) a) How many moles in the following:

i) 21.3 g of chlorine, Cl_2	$\frac{mass}{M_r} = \frac{21.3}{71} = 0.3 \text{ mol}$
ii) 5.34 kg of aluminium bromide, $AlBr_3$	$\frac{mass}{M_r} = \frac{5340}{267} = 20 \text{ mol}$

- b) What is the mass of 0.25 moles of sulfur dioxide, SO₂? $M_r \times moles = 64 \times 0.25 = 16 \text{ g}$
- 3) What mass of bromine reacts with 2.3 g of sodium to form sodium $2Na + Br_2 \rightarrow 2NaBr$ bromide?

moles Na = $\frac{mass}{M_r} = \frac{2.3}{23} = 0.1 \text{ mol}$ moles Br₂ = $\frac{0.1}{2} = 0.05 \text{ mol}$ mass Br₂ = M_r x moles = 160 x 0.05 = 8.0 g

4) What mass of oxygen reacts with 280 g of iron to form iron oxide? $2Fe + 3O_2 \rightarrow 2Fe_2O_3$

moles Fe = $\frac{mass}{M_r} = \frac{280}{56} = 5 \text{ mol}$ moles O₂ = 5 x $\frac{3}{2} = 7.5 \text{ mol}$ mass O₂ = M_r x moles = 32 x 7.5 = 240 g

5) What is the percentage atom economy to make tungsten (W) from $WO_3 + 3H_2 \rightarrow W + 3H_2O$ tungsten oxide in this reaction?

 $WO_3 + 3H_2 \rightarrow W + 3H_2O$ $M_r \quad 232 \quad 2 \quad 184$ $Mass \quad 232 \quad g \quad 3(2) \quad g \quad 184g$ % atom economy = $\frac{mass \ of \ desired \ product}{total \ mass \ of \ all \ reactants} \times 100 = \frac{184}{232+3(2)} \times 100 = 77.3\%$

6) a) What is the maximum mass of calcium hydroxide that can be formed by reaction of 2.8 g of calcium oxide with water?

 $CaO + H_2O \rightarrow Ca(OH)_2$

moles CaO = $\frac{mass}{M_r}$ = $\frac{2.8}{56}$ = 0.05 mol moles Ca(OH)₂ = 0.05 mol mass Ca(OH)₂ = M_r x moles = 74 x 0.05 = 3.7 g

b) In a reaction, 2.6 g of calcium hydroxide was formed from 2.8 g of calcium oxide. Calculate the percentage yield.

% yield = $\frac{mass formed}{maximum mass possible} \times 100 = \frac{2.6}{3.7} \times 100 = 70.3\%$

7) 1.95 g of potassium is reacted with 5.08 g of iodine. Work out which is the $2K + I_2 \rightarrow 2KI$ limiting reagent and then calculate the mass of potassium iodide formed.

moles K =
$$\frac{mass}{M_r}$$
 = $\frac{1.95}{39}$ = 0.05 mol
moles I₂ = $\frac{mass}{M_r}$ = $\frac{5.08}{254}$ = 0.02 mol

 $2K + I_2 \rightarrow 2KI$

0.05 moles of K needs 0.025 moles of I_2 for all the K to react, but we don't have this much I_2 therefore I_2 is the limiting reagent (so the K is in excess and does not all react) therefore only 0.04 moles of K reacts with the 0.02 moles of I_2 , and forms 0.04 moles of KI

mass KI = $M_r x$ moles = 166 x 0.04 = 6.64 g

8) 1.20 g of hydrated tin chloride decompose to form 1.01 g of $SnCl_2.xH_2O \rightarrow SnCl_2 + xH_2O$ anhydrous tin chloride on heating. Calculate the value of x.

moles SnCl₂ = $\frac{1.01}{190}$ = 0.005316 mol mass H₂O = 1.20 - 1.01 = 0.19 g moles H₂O = $\frac{0.19}{18}$ = 0.01056 mol

Ratio of moles $SnCl_2: H_2O = 0.005316: 0.01056 = \frac{0.005316}{0.005316} = \frac{0.01056}{0.005316} = 1:2$

∴ x = 2	(nearest whole number)
---------	------------------------

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can convert units			Use equation to find reacting moles		
Shows suitable working			Which numbers are part of formula			Can work out % atom economy		
Does not round too much			Can work out <i>M</i> _r			Can work out % yield		
Can use sig figs			Work out moles from mass			Understands limiting reagents		
Gives units			Can work out mass from moles			Water of crystallisation calculations		