

1.3. Molar gas volume

According to Avogadro's Law, as long as the pressure and temperature are kept the same, equal volumes of gases contain equal numbers of moles of gas. Under **standard temperature and pressure** (273 K and 101,325 Pa) **1 mole of any gas has a volume of 22.4 dm**³.

Use Avogradro's law to find out which gas syringes contain identical numbers of moles of gas.

(1 mark for each correct pairing, 1 mark for correct number of moles of gas)

Syringe A contains 105 cm³ of gas

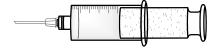
Syringe F contains 48 mg of ammonia

Syringe B contains 5.6 dm³ of gas

Syringe G contains 0.61 g of bromine

Syringe C contains 63 cm³ of gas

Syringe H contains 0.27 g of butane (C_4H_{10})


Syringe D contains 0.085 dm³ of gas

Syringe I contains 7 g of nitrogen

Syringe E contains 1.24 × 10⁻⁴ m³ of gas

Syringe J contains 0.16 g of air

1.1.4. Moles summary

- 1. (a) 1 mole × (correct answer, 0.5 moles)
 - (b) 1 mole ✓
- 2. (a) K + 2 $H_2O \rightarrow K(OH)_2 + H_2 \times (correct answer; 2 K + 2 <math>H_2O \rightarrow 2 KOH + H_2)$
 - (b) 0.075 moles ✓
- **3.** (a) 22.5 g ✓
 - (b) 249.6 g × (correct answer; 49.9 g)
- **4**. (a) 0.5 moles ✓
 - (b) 64 g × (correct answer; 128 g)
- **5**. (a) 5×10^{-3} moles \checkmark
 - (b) $93.8 \text{ cm}^3 \checkmark$

1.2 The ideal gas equation

Hydrogen; 5 moles, 54 K

Methane; 0.625 moles, 0.025 m³

Helium; 2.5 moles, 3,745 kPa

Carbon dioxide; 0.227 moles, 4.27 × 10⁻³ m³

Chlorine; 0.141 moles, 2387 °C

1.3 Molar gas volume

Syringe A links with **syringe H**; no. of moles = 4.7×10^{-3} moles

Syringe B links with syringe I; no. of moles = 0.25 moles

Syringe C links with **syringe F**; no. of moles = 2.8×10^{-3} moles

Syringe D links with **syringe G**; no. of moles = 3.8×10^{-3} moles

Syringe E links with **syringe J**; no. of moles = 5.5×10^{-3} moles

1.4 Empirical and molecular formulae

Amino acid A has an empirical formula of $C_5H_{10}N_2O_3$ and is therefore **glutamic acid**

Amino acid B has an empirical formula of C₃H₇NO and is therefore lysine

Amino acid C has an empirical formula of C₄H₈N₂O₃ and is therefore aspartic acid

Amino acid D has an empirical formula of C₄H₉NO₃ and is therefore threonine

Amino acid E has an empirical formula of C₃H₇NO₂ and is therefore alanine

