

STARTER FOR 10...

### 1.1.4. Moles summary

Mark the student's answers to the questions below (shown to the right). Mark all 10 correctly to get the full 10 marks.

1. Magnesium reacts with acid as shown; $\mathrm{Mg}+2 \mathrm{HCl} \rightarrow \mathrm{MgCl}_{2}+\mathrm{H}_{2}$
(a) How many moles of Mg reacts with 1 mole of HCl
1 mole
(b) How many moles of Mg must be reacted to produce 1 mole of $\mathrm{H}_{2}$

1 mole
2. Potassium reacts with water to produce potassium hydroxide and hydrogen gas.
(a) Write a balanced equation for the reaction $\mathrm{K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{K}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
(b) How many moles of potassium must be reacted with an excess of water to produce 0.075 moles of potassium hydroxide?
0.075 moles
3. The dehydration of hydrated copper sulphate is a reversible reaction;

$$
\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CuSO}_{4}+5 \mathrm{H}_{2} \mathrm{O}
$$

(a) What mass water is produced when 0.25 moles of hydrated copper sulphate is heated?
(b) What mass of hydrated copper sulphate must be heated to produce 18 g of $\mathrm{H}_{2} \mathrm{O}$ ?
4. The equation for the complete combustion of methane is; $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(a) How many moles of carbon dioxide would be produced by the complete combustion of 8 g of $\mathrm{CH}_{4}$ ?
(b) What mass of oxygen is needed for the complete combustion of 32 g of methane?
5. In an acid / base titration between ethanoic acid and sodium hydroxide the equation for the reaction is;

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

(a) How many moles of NaOH is needed to neutralise $50 \mathrm{~cm}^{3}$ of $0.1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{CH}_{3} \mathrm{COOH}$ ? $5 \times 10^{-3}$ moles
(b) What volume of $0.1 \mathrm{~mol} \mathrm{dm}^{-3}$ ethanoic acid is needed to neutralise $75 \mathrm{~cm}^{3}$ of $0.125 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{NaOH}$ ?
$93.8 \mathrm{~cm}^{3}$

### 1.1.4. Moles summary

1. (a) 1 mole $\times$ (correct answer, 0.5 moles)
(b) 1 mole $\checkmark$
2. (a) $\mathrm{K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{K}(\mathrm{OH})_{2}+\mathrm{H}_{2} \times$ (correct answer; $2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}$ )
(b) 0.075 moles $\checkmark$
3. (a) $22.5 \mathrm{~g} \checkmark$
(b) $249.6 \mathrm{~g} \times$ (correct answer; 49.9 g )
4. (a) 0.5 moles $\checkmark$
(b) $64 \mathrm{~g} \times$ (correct answer; 128 g )
5. (a) $5 \times 10^{-3}$ moles
(b) $93.8 \mathrm{~cm}^{3} \checkmark$

### 1.2 The ideal gas equation

Hydrogen; 5 moles, 54 K
Methane; 0.625 moles, $0.025 \mathrm{~m}^{3}$
Helium; 2.5 moles, $3,745 \mathrm{kPa}$
Carbon dioxide; 0.227 moles, $4.27 \times 10^{-3} \mathrm{~m}^{3}$
Chlorine; 0.141 moles, $2387{ }^{\circ} \mathrm{C}$

### 1.3 Molar gas volume

Syringe A links with syringe $\mathbf{H}$; no. of moles $=4.7 \times 10^{-3}$ moles
Syringe B links with syringe I; no. of moles $=0.25$ moles
Syringe C links with syringe F; no. of moles $=2.8 \times 10^{-3}$ moles
Syringe D links with syringe G; no. of moles $=3.8 \times 10^{-3}$ moles
Syringe E links with syringe J; no. of moles $=5.5 \times 10^{-3}$ moles

### 1.4 Empirical and molecular formulae

Amino acid $A$ has an empirical formula of $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ and is therefore glutamic acid
Amino acid $B$ has an empirical formula of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$ and is therefore lysine
Amino acid $C$ has an empirical formula of $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$ and is therefore aspartic acid
Amino acid $D$ has an empirical formula of $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{3}$ and is therefore threonine
Amino acid $E$ has an empirical formula of $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$ and is therefore alanine

