

0.2.9. Moles and concentration

To calculate the concentration of a solution we use the equation:

concentration (mol dm⁻³) = $\frac{\text{amount of substance (mol)}}{\text{volume (dm^3)}}$

Use the equation to help you complete each of the statements in the questions below.

- a. 1.5 mol of NaCl dissolved in 0.25 dm³ of water produces a solution with a concentration of......mol dm⁻³. (1 mark)
 - b. 250 cm³ of a solution of HCl(aq) with a concentration of 0.0150 mol dm⁻³ contains
 moles. (1 mark)
- 2. In this question you will need to convert between an amount in moles and a mass as well as using the equation above.

Space for working is given beneath each question.

- a. 5.0 g of NaHCO₃ dissolved in 100 cm³ of water produces a solution with a concentration ofmol dm⁻³.
 (2 marks)
- c. The volume of a solution of cobalt(II) chloride, CoCl₂, with a concentration of 1.3 mol dm⁻³ that contains 2.5 g of CoCl₂ iscm³.
 (3 marks)

© Royal Society of Chemistry, registered charity number 207890. This resource is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. To view a copy of the licence, visit <u>https://creativecommons.org</u>. Images © Shutterstock.

0.2.8. Moles and mass

1.	a.	$32.0 \text{ g} \div 16.0 \text{ g mol}^{-1} = 2 \text{ mol}$	(1 mark)
	b.	175 g ÷ 100.1 g mol ⁻¹ = 1.75 mol	(1 mark)
	C.	$0.2 \text{ g} \div 180.0 \text{ g mol}^{-1} = 0.0011 \text{ mol}$	(1 mark)
2.	а	20 mol × 180 g mol ⁻¹ = 3 600 g	(1 mark)
	b	$5.00 \times 10^{-3} \text{ mol} \times 63.5 \text{ g mol}^{-1} = 0.318 \text{ g}$	(1 mark)
	С	42.0 mol × 249.6 g mol ⁻¹ = 10 500 g	(1 mark)
3.	a.	i. $3.09 \text{ g} \div 0.0250 \text{ mol} = 123.6 \text{ g mol}^{-1}$	(1 mark)
		ii. CuCO ₃	(1 mark)
	b.	molar mass of chromium carbonate = $4.26 \text{ g} \div 0.015 \text{ mol} = 284 \text{ g mol}^{-1}$	(1 mark)
		Cr ₂ (CO ₃)	(1 mark)

BONUS QUESTION

 $6.02 \times 10^{23} \text{ p} \div 7500\ 000\ 000\ \text{people} = 8.03 \times 10^{13} \text{ p}$ per person or 803 000 million pounds per person!

0.2.9. Moles and concentration

1.	a.	$1.5 \text{ mol} \div 0.25 \text{ dm}^3 = 6.0 \text{ mol} \text{ dm}^{-3}$	(1 mark)
	b.	$0.25 \text{ dm}^3 \times 0.0150 \text{ mol dm}^{-3} = 3.75 \times 10^{-3} \text{ mol}$	(1 mark)
	C.	$0.125 \text{ mol} \div 0.85 \text{ mol} \text{ dm}^{-3} = 0.15 \text{ dm}^3$	(1 mark)
2.	a.	5.0 g ÷ 84.0 g mol ^{−1} = <u>0.0595 mol</u>	(1 mark)
		$0.0595 \text{ mol} \div 0.100 \text{ dm}^3 = 0.60 \text{ mol dm}^{-3}$	(1 mark)
	b.	$0.025 \text{ dm}^3 \times 3.8 \text{ mol dm}^{-3} = 0.095 \text{ mol}$	(1 mark)
		0.095 mol × 40.0 g mol⁻¹ = <u>3.8 g</u>	(1 mark)
	c.	2.5 g ÷ 129.9 g mol ⁻¹ = <u>0.0192 mol</u>	(1 mark)
		0.0192 mol ÷ 1.3 mol dm ⁻³ = <u>0.015 dm³</u>	(1 mark)
		0.0148 dm ³ = <u>15 cm³</u> (to 2 sig. fig.)	(1 mark)

© Royal Society of Chemistry, registered charity number 207890. This resource is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. To view a copy of the licence, visit <u>https://creativecommons.org</u>. Images © Shutterstock.