Experiment Circus

Here are 10 simple questions involving measurements to get students accustomed to using the mole concept in different contexts. Select the most appropriate experiments for the class.

\triangle
Remember to complete a risk assessment before beginning practical work.

Set up an experiment on each desk.
Split the class into groups of 3 .
Set a time limit for each task.

A

Equipment

Empty drink can made of aluminium, balance, calculator

Question

How many atoms of aluminium are in the can?
What assumptions have you made in your answer?

C

Equipment

Aluminium foil, balance, ruler, calculator

Question

What does I atom of aluminium cost?

The sample you have been given came from a roll of aluminium of dimensions $300 \mathrm{~mm} \times 10 \mathrm{~m}$ and cost $£ 1.84$.

B

Equipment

50p coin, balance, calculator

Question

The 50p coin is 75% copper and 25% nickel by mass. How much copper and zinc (in mol) is there in the coin?
How many atoms of each do you have?

D

Equipment

Stopwatch, calculator

Question

How long would it take you to count up to Avogadro's number, starting now?

Calculate in seconds, hours, days, years, centuries and millennia.

E

Equipment

Balance, citric acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}\right)$, sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$, calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$, tartaric acid $\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}\right)$, periodic table.

Challenge

Measure out samples of each of the substances you have so that you have four piles, each containing the same number of molecules.

G

Equipment

Calculator, periodic table

Question

Somebody left the note "I love Avogadro" lying in the lab. How many atoms of carbon (from the graphite pencil) are on the piece of paper?

Mass of paper $=2.48652 \mathrm{~g}$
Mass of paper + pencil $=2.49428 \mathrm{~g}$

Equipment

Plastic drink bottle, balloon, sodium bicarbonate, vinegar

Challenge

Pour $100 \mathrm{~cm}^{3}$ vinegar into a plastic drink bottle. Place 8 g sodium bicarbonate into a balloon. Attach the balloon to the neck of the bottle (you are going to collect the gas). Estimate how much gas has been produced in your experiment.
Does this agree with what the equation predicts (sodium bicarbonate is the limiting reagent)?
Identify sources of error.
$\mathrm{NaHCO}_{3}+\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCH}_{3} \mathrm{COO}$

F

Equipment

Balance, aluminium, copper, carbon, periodic table

Challenge

You have been provided with a sample of copper. Measure the same number of Al atoms out. Then carbon.

H

Equipment

Measuring tapes, calculator

Question

How much gas is present in this room (in mol). Is the true answer likely to be more or less than your estimation?
Why?
What volume of oxygen is there in this room?
At 298K , one mol of any gas occupies $24 \mathrm{dm}^{3}$. 21% of air is oxygen.

Equipment
Calculator, $100 \mathrm{~cm}^{3}$ volumetric flask, NaCl , balance, periodic table

Challenge

A I M solution is a solution that contains I mole of substance per dm^{3} of solvent.
Make up $100 \mathrm{~cm}^{3}$ of a I M solution of NaCl . How much NaCl did you have to put in?

