CALCULATIONS (B)

1		In what molar ratio do the following substances react?	
	а	sulfuric acid acid with barium hydroxide 1:1	(1)
	b	nitric acid with potassium carbonate 2:1	(1)
2		Write an ionic equation, including state symbols, for each of the following reactions.	
	а	reaction of aqueous ammonia with hydrochloric acid	
		$H^{+}(aq) + NH_{3}(aq) \rightarrow NH_{4}^{+}(aq)$	(2)
	b	precipitation of lead(II) bromide when aqueous lead(II) nitrate is mixed with aqueous sodium bromide	
		Pb ²⁺ (aq) + 2Br⁻(aq) → PbBr₂(s)	(2)
3		Deduce the limiting reagent and calculate what mass of magnesium oxide is formed when 486 mg of magnesium reacts with 240 mg of oxygen.	
		2Ma + O > 2MaO	

UICK

$$2Mg + O_2 \rightarrow 2MgO$$

 $mol O_{2} = \frac{0.240}{32.0} = 0.00750$ $mol Mg = \frac{0.486}{24.3} = 0.0200$ $0.00750 mol of O_{2} reacts with 0.0150 mol of Mg to form 0.0150 mol of MgO$ $mass MgO = 0.0150 \times 40.3 = 0.605 g (3sf)$ (4)

4 What is the atom economy to make tungsten in this reaction: $WO_3 + 3H_2 \rightarrow W + 3H_2O$

atom economy =
$$100 x \frac{183.8}{183.8 + 3(18.0)}$$
 = 77.3% (2)