1 Calculate the mass of aluminium oxide that would be formed when 2.70 g of aluminium reacts with 2.56 g of oxygen. Give your answer to the appropriate number of significant figures.

CALCULATIONS (C)

(4)

(2)

(2)

(2)

$$4Al + 3O_2 \rightarrow 2Al_2O_3$$

mol Al = $\frac{2.70}{27.0}$ = 0.100 mol O₂ = $\frac{2.56}{32.0}$ = 0.0800 0.100 mol of Al reacts with 0.0750 mol of O₂ to form 0.0500 mol of Al₂O₃ mass Al₂O₃ = 0.0050 x 102.0 = 5.10 g (3sf)

2 Calculate the pressure exerted by 8.00 g of oxygen gas in a container of volume 205 cm³ at 37°C. Give your answer to the appropriate number of significant figures.

mol O₂ =
$$\frac{8.00}{32.0}$$
 = 0.250
 $P = \frac{nRT}{V} = \frac{0.250 \times 8.31 \times 310}{205 \times 10^{-6}} = 3.14 \times 10^{6} \text{ Pa (3sf)}$
(4)

- 3 Write an ionic equation, including state symbols, for each of the following reactions.
 - a reaction of aqueous potassium carbonate solution with nitric acid

$$2H^{+}(aq) + CO_3^{2-}(aq) \rightarrow H_2O(I) + CO_2(g)$$

b precipitation of lead(II) iodide when aqueous lead(II) nitrate is mixed with aqueous potassium iodide

 $Pb^{2+}(aq) + 2l^{-}(aq) \rightarrow Pbl_{2}(s)$

4 Calculate the atom economy when titanium is extracted from titanium chloride.

 $TiCl_4$ + 2Mg \rightarrow Ti + 2MgCl₂

atom economy = $100 x \frac{47.9}{47.9 + 2(95.3)}$ = 20.1%