GCSE

1 What is the mass of one mole of CO_{2} ?
$M_{r}=12+2(16)=44$
mass of 1 mole of $\mathrm{CO}_{2}=44 \mathrm{~g}$

2 How many moles are there in 99 g of $\mathrm{H}_{2} \mathrm{O}$?

$$
\begin{aligned}
& M_{r}=2(1)+16=18 \\
& \text { moles }=\frac{\text { mass }}{M_{r}}=\frac{99}{18}=5.5 \text { moles }
\end{aligned}
$$

3 What is the mass of 0.250 moles of N_{2} ?

```
\(M_{r}=2(14)=28\)
mass \(=M_{r} \times\) moles \(=28 \times 0.250=7.0 \mathrm{~g}\)
```

4 How many moles are there in 1.2 kg of Mg ?

$$
\begin{aligned}
& M_{r}=24 \\
& \text { moles }=\frac{\text { mass }}{M_{r}}=\frac{1200}{24}=50 \mathrm{moles}
\end{aligned}
$$

5 Calculate the relative formula mass $\left(M_{r}\right)$ of each of the following substances.
a $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$
$M_{r}=24+2(14)+6(16)=148$
b oxygen
O_{2}
$M_{r}=2(16)=32$
c potassium sulfate
$\mathrm{K}_{2} \mathrm{SO}_{4}$
$M_{r}=2(39)+32+4(16)=174$

6 Calculate the mass in grams of one atom of ${ }^{31} \mathrm{P}$. Give your answer in standard form to 3 significant figures. (the Avogadro constant $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$)

$$
\text { mass of one atom }=\frac{31}{6.022 \times 10^{23}}=5.15 \times 10^{-23} \mathrm{~g}
$$

