1 What is the mass of one mole of CO₂?

$$M_r = 12 + 2(16) = 44$$

mass of 1 mole of $CO_2 = 44$ g

2 How many moles are there in 99 g of H₂O?

$$M_r = 2(1) + 16 = 18$$

moles = $\frac{mass}{M_r} = \frac{99}{18} = 5.5$ moles

3 What is the mass of 0.250 moles of N_2 ?

$$M_r = 2(14) = 28$$

mass = $M_r \times \text{moles} = 28 \times 0.250 = 7.0 \text{ g}$

4 How many moles are there in 1.2 kg of Mg?

$$M_r = 24$$
moles = $\frac{mass}{M_r} = \frac{1200}{24} = 50$ moles

5 Calculate the relative formula mass (M_r) of each of the following substances.

a
$$Mg(NO_3)_2$$
 $M_r = 24 + 2(14) + 6(16) = 148$
b oxygen O_2 $M_r = 2(16) = 32$
c potassium sulfate K_2SO_4 $M_r = 2(39) + 32 + 4(16) = 174$

6 Calculate the mass in grams of one atom of 31 P. Give your answer in standard form to 3 significant figures. (the Avogadro constant = $6.022 \times 10^{23} \text{ mol}^{-1}$)

mass of one atom =
$$\frac{31}{6.022 \times 10^{23}}$$
 = 5.15 x 10⁻²³ g

© www.CHEMSHEETS.co.uk 23-Oct-2018 Chemsheets GCSE 1296