1 a How many moles of magnesium bromide are formed when 3.0 moles of magnesium reacts with 2.0 moles of bromine?
b How many moles of ammonia are formed when 4.0 moles of nitrogen reacts with 9.0 moles of hydrogen?
c How many moles of iron oxide are formed when 12.0 moles of iron reacts with 6.0 moles of oxygen?
$\mathrm{Mg}+\mathrm{Br}_{2} \rightarrow \mathrm{MgBr}_{2}$
2.0 moles of MgBr_{2}
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
6.0 moles of NH_{3}
$4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
4.0 moles of $\mathrm{Fe}_{2} \mathrm{O}_{3}$
24.8 g of magnesium is reacted with 4.5 g of steam. Work out which is the limiting reagent and then calculate the mass of magnesium oxide formed.

$$
\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}
$$

moles $\mathrm{Mg}=\frac{\text { mass }}{M_{r}}=\frac{4.8}{24}=0.2 \mathrm{~mol}$
moles $\mathrm{H}_{2} \mathrm{O}=\frac{\text { mass }}{M_{r}}=\frac{4.5}{18}=0.25 \mathrm{~mol}$
0.2 moles of $\mathbf{M g}$ needs 0.2 moles of $\mathrm{H}_{2} \mathrm{O}$ for all the $\mathbf{M g}$ to react,
there is more than enough $\mathrm{H}_{2} \mathrm{O}$ and so the $\mathrm{H}_{2} \mathrm{O}$ is in excess, therefore Mg is the limiting reagent therefore 0.2 moles of $\mathbf{M g}$ reacts with the 0.2 moles of $\mathrm{H}_{2} \mathrm{O}$, and forms 0.2 moles of $\mathbf{M g O}$
mass $\mathrm{MgO}=\mathrm{M}_{\mathrm{r}} \times$ moles $=40 \times 0.2=8 \mathrm{~g}$
32.0 g of calcium is reacted with 0.32 g of oxygen. Work out which is the limiting reagent and then calculate the mass of calcium oxide formed.

$$
2 \mathrm{Ca}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CaO}
$$

moles $\mathrm{Ca}=\frac{\text { mass }}{M_{r}}=\frac{2.0}{40}=0.05 \mathrm{~mol}$
moles $\mathrm{O}_{2}=\frac{\text { mass }}{M_{r}}=\frac{0.32}{32}=0.01 \mathrm{~mol}$
0.05 moles of Ca needs 0.025 moles of O_{2} for all the Ca to react, but we don't have this much O_{2} therefore O_{2} is the limiting reagent (so the Ca is in excess and does not all react)
therefore only 0.02 moles of Ca reacts with the 0.01 moles of O_{2}, and forms 0.02 moles of CaO
mass $\mathrm{CaO}=\mathrm{M}_{\mathrm{r}} \times$ moles $=56 \times 0.02=1.12 \mathrm{~g}$

