15.2 g of chromium (Cr) reacts with 4.8 g of oxygen $\left(\mathrm{O}_{2}\right)$ to form chromium oxide. Find the molar reacting ratio between chromium and oxygen.

$$
\begin{aligned}
& \text { moles } \mathrm{Cr}=\frac{\text { mass }}{M_{r}}=\frac{5.2}{52}=0.1 \mathrm{~mol} \\
& \text { moles } \mathrm{O}_{2}=\frac{\text { mass }}{M_{r}}=\frac{4.8}{32}=0.15 \mathrm{~mol} \\
& \text { reacting ratio } \mathrm{Cr}: \mathrm{O}_{2}=0.10: 0.15=\frac{0.10}{0.10}: \frac{0.15}{0.10}=1: 1.5=2: 3
\end{aligned}
$$

$$
\therefore \quad 2 \mathrm{Cr}+3 \mathrm{O}_{2} \rightarrow
$$

20.48 g of hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ decomposes to form 0.14 g of nitrogen $\left(\mathrm{N}_{2}\right)$ and 0.34 g of ammonia $\left(\mathrm{NH}_{3}\right)$. Find the molar ratios and use this to give the equation for the reaction.

$$
\begin{aligned}
& \text { moles } \mathrm{N}_{2} \mathrm{H}_{4}=\frac{\text { mass }}{M_{r}}=\frac{0.48}{32}=0.015 \mathrm{~mol} \\
& \text { moles } \mathrm{N}_{2}=\frac{\text { mass }}{M_{r}}=\frac{0.14}{28}=0.005 \mathrm{~mol} \\
& \text { moles } \mathrm{NH}_{3}=\frac{\text { mass }}{M_{r}}=\frac{0.34}{17}=0.020 \mathrm{~mol}
\end{aligned}
$$

reacting ratio $\mathrm{N}_{2} \mathrm{H}_{4}: \mathrm{N}_{2}: \mathrm{NH}_{3}=0.015: 0.005: 0.020=\frac{0.015}{0.005}: \frac{0.005}{0.005}: \frac{0.020}{0.005}=3: 1: 4$
$\therefore \quad 3 \mathbf{N}_{2} \mathrm{H}_{4} \rightarrow \mathbf{N}_{\mathbf{2}}+\mathbf{4} \mathbf{N H}_{3}$

