GCSE

The volume of one mole of any gas at room temperature and pressure is $24 \mathrm{dm}^{3}$

1 What is the volume of 0.50 moles of hydrogen gas $\left(\mathrm{H}_{2}\right)$ at room temperature and pressure?

$$
\text { volume of } \mathrm{H}_{2}=24 \times \text { moles }=24 \times 0.50=12 \mathrm{dm}^{3}
$$

2 How many moles in $1.8 \mathrm{dm}^{3}$ of helium gas (He) at room temperature and pressure?

$$
\text { moles of } \mathrm{He}=\frac{\text { volume }}{24}=\frac{1.8}{24}=0.075 \mathrm{~mol}
$$

3 What is the volume of 7.0 g of nitrogen gas $\left(\mathrm{N}_{2}\right)$ at room temperature and pressure?

$$
\begin{aligned}
& \text { moles of } \mathrm{N}_{2}=\frac{m a s s}{M_{r}}=\frac{7.0}{28}=0.25 \mathrm{~mol} \\
& \text { volume of } \mathrm{N}_{2}=24 \times \text { moles }=24 \times 0.25=6 \mathrm{dm}^{3}
\end{aligned}
$$

4 What volume of oxygen gas reacts with $100 \mathrm{~cm}^{3}$ of butane gas, with both gases measured at the same temperature and pressure?

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
\text { volume of } \mathrm{O}_{2}=\frac{13}{2} \times \text { moles } \mathrm{C}_{4} \mathrm{H}_{10}=\frac{13}{2} \times 100=650 \mathrm{~cm}^{3}
$$

5 What volume of hydrogen gas, measured at room temperature and pressure, is formed when 6.9 g of sodium reacts with water?

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

$$
\begin{aligned}
& \text { moles of } \mathrm{Na}=\frac{\text { mass }}{M_{r}}=\frac{6.9}{23}=0.30 \mathrm{~mol} \\
& \text { moles of } \mathrm{H}_{2}==\frac{1}{2} \times 0.30=0.15 \mathrm{~mol} \\
& \text { volume of } \mathrm{H}_{2}=24 \times \text { moles }=24 \times 0.15=3.6 \mathrm{dm}^{3}
\end{aligned}
$$

