A student carried out a titration to find the concentration of a solution of calcium hydroxide. In each titration, the student used $25.0 \mathrm{~cm}^{3}$ of the calcium hydroxide solution and titrated it against $0.0100 \mathrm{~mol} / \mathrm{dm}^{3}$ hydrochloric acid solution.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

The student's results are shown in the table.

titration	1	2	3
start reading $/ \mathrm{cm}^{3}$	0.00	23.15	0.10
end reading $/ \mathrm{cm}^{3}$	23.15	47.05	23.90
volume added $/ \mathrm{cm}^{3}$	23.15	23.90	23.80

a Find the mean titre to the appropriate number of significant figures and give the uncertainty in this measurement.

$$
\text { mean }=\frac{23.90+23.80}{2}=23.85 \pm 0.05 \mathrm{~cm}^{3}
$$

b Find the concentration of the calcium hydroxide in $\mathrm{mol} / \mathrm{dm}^{3}$ and $\mathrm{g} / \mathrm{dm}^{3}$. Give your answers to 3 significant figures.

$$
\begin{aligned}
& \text { moles } \mathrm{HCl}=\text { conc } x \text { volume }\left(\mathrm{dm}^{3}\right)=0.0100 \times \frac{23.85}{1000}=0.0002385 \mathrm{~mol} \\
& \text { moles } \mathrm{Ca}(\mathrm{OH})_{2}=\frac{\text { moles } \mathrm{HCl}}{2}=\frac{0.0002385}{2}=0.00011925 \mathrm{~mol} \\
& \text { concentration } \mathrm{Ca}(\mathrm{OH})_{2} \text { in mol} / \mathrm{dm}^{3}=\frac{\text { moles } \mathrm{Ca}(0 \mathrm{OH})_{2}}{\text { volume }\left(\mathrm{dm}^{3}\right)}=\frac{0.00011925}{\frac{25.0}{1000}}=0.00477 \mathrm{~mol} / \mathrm{dm}^{3} \\
& \text { concentration } \mathrm{Ca}(\mathrm{OH})_{2} \text { in } \mathrm{g} / \mathrm{dm}^{3}=\mathrm{M}_{\mathrm{r}} \times \text { concentration } \mathrm{Ca}(\mathrm{OH})_{2} \text { in mol } / \mathrm{dm}^{3} \\
& \\
& =0.00477 \times 74=0.353 \mathrm{~g} / \mathrm{dm}^{3}
\end{aligned}
$$

c Outline the key steps in carrying out this titration.

- using a pipette
- place $25.0 \mathbf{~ c m}^{3}$ of calcium hydroxide in a conical flask
- add an indicator
- put acid in a burette
- add acid to flask until indicator changes colour
- add drop by drop near the end
- record results
- repeat

