

A student carried out a titration to find the concentration of a solution of calcium hydroxide. In each titration, the student used 25.0 cm³ of the calcium hydroxide solution and titrated it against 0.0100 mol/dm³ hydrochloric acid solution.

$$Ca(OH)_2(aq) + 2HCl(aq) \rightarrow CaCl_2(aq) + 2H_2O(I)$$

The student's results are shown in the table.

titration	1	2	3
start reading / cm ³	0.00	23.15	0.10
end reading / cm ³	23.15	47.05	23.90
volume added / cm ³	23.15	23.90	23.80

a Find the mean titre to the appropriate number of significant figures and give the uncertainty in this measurement.

mean =
$$\frac{23.90 + 23.80}{2}$$
 = 23.85 ± 0.05 cm³

b Find the concentration of the calcium hydroxide in mol/dm³ and g/dm³. Give your answers to 3 significant figures.

moles HCl =
$$conc x \ volume \ (dm^3) = 0.0100 \ x \ \frac{23.85}{1000} = 0.0002385 \ mol$$

moles $Ca(OH)_2 = \frac{moles \ HCl}{2} = \frac{0.0002385}{2} = 0.00011925 \ mol$

concentration $Ca(OH)_2$ in $mol/dm^3 = \frac{moles \ Ca(OH)_2}{volume \ (dm^3)} = \frac{0.00011925}{\frac{25.0}{1000}} = 0.00477 \ mol/dm^3$

concentration $Ca(OH)_2$ in $g/dm^3 = M_r \ x \ concentration \ Ca(OH)_2$ in mol/dm^3
 $= 0.00477 \ x \ 74 = 0.353 \ g/dm^3$

- **c** Outline the key steps in carrying out this titration.
 - using a pipette
 - place 25.0 cm³ of calcium hydroxide in a conical flask
 - · add an indicator
 - put acid in a burette
 - · add acid to flask until indicator changes colour
 - · add drop by drop near the end
 - record results
 - repeat

© www.CHEMSHEETS.co.uk 16-Jan-2019 Chemsheets GCSE 1313