

# STARTER FOR 10... 

### 0.2.3. Quantity calculus (unit determination)

1. Determine the units of density given that

$$
\text { density }=\frac{\operatorname{mass}(g)}{\text { volume }\left(\mathrm{cm}^{3}\right)}
$$

2. Determine the units of concentration given that

$$
\text { concentration }=\frac{\text { number of moles }(\mathrm{mol})}{\text { volume }\left(\mathrm{dm}^{3}\right)}
$$

3. Pharmacists often calculate the concentration of substances for dosages. In this case the volumes are smaller, measured in $\mathrm{cm}^{3}$, and the amount is given as a mass in grams.
Determine the units of concentration when

$$
\text { concentration }=\frac{\operatorname{mass}(g)}{\text { volume }\left(\mathrm{cm}^{3}\right)}
$$

(1 mark)
4. Rate of reaction is defined as the 'change in concentration per unit time'. Determine the units for rate when concentration is measured in $\mathrm{mol} \mathrm{dm}^{-3}$ and time in seconds.
5. Pressure is commonly quoted in pascals $(\mathrm{Pa})$ and can be calculated using the formula below. The SI unit of force is newtons $(\mathrm{N})$ and area is $\mathrm{m}^{2}$.

$$
\text { pressure }=\frac{\text { force }}{\text { area }}
$$

Use this formula to determine the SI unit of pressure that is equivalent to the Pascal.
6. Determine the units for each of the following constants $(K)$ by substituting the units for each part of the formula into the expression and cancelling when appropriate. For this exercise you will need the following units [ ] $=\mathrm{mol} \mathrm{dm}{ }^{-3}$, rate $=\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}, \mathrm{p}=\mathrm{kPa}$.
a. $\quad K_{C}=\frac{[A][B]^{2}}{[C]}$
C. $K_{p} \frac{(p A)^{0.5}}{(p B)}$
b. $K=\frac{\text { rate }}{[A][B]}$
d. $K_{w}=\left[H^{+}\right]\left[\mathrm{OH}^{-}\right]$
e. $K_{a}=\frac{\left[H^{+}\right]\left[X^{-}\right]}{[H X]}$


STARTER FOR 10...

## 0. TRANSITION SKILLS Answers

2. | a. | 180 |
| :--- | :--- |
| b. | 5352 |
| c. | 180 |
| Evaluation: Pressing equals after each operation leads to BODMAS errors. | (1 mark) | (1 mark)

0.2.3. Quantity calculus

1. $\mathrm{g} \mathrm{cm}^{-3}$
(1 mark)
2. $\mathrm{mol} \mathrm{dm}^{-3}$ (1 mark)
3. $\mathrm{g} \mathrm{cm}^{-3}$
4. $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$
5. $\mathrm{N} \mathrm{m}^{-2}$
6. a. $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
b. $\mathrm{mol}^{-1} \mathrm{dm}^{3} \mathrm{~s}^{-1}$ (1 mark)
c. $\mathrm{kPa}^{-0.5}$ (1 mark)
d. $\mathrm{mol}^{2} \mathrm{dm}^{-6}$
(1 mark)
e. $\mathrm{mol} \mathrm{dm}^{-3}$
(1 mark)
