

The SI unit for volume is **metre cubed**, m^3 . However as volumes in chemistry are often smaller than 1 m³, fractions of this unit are used as an alternative.

centimetre cubed, cm ³	decimetre cubed, dm ³
centi- prefix one hundredth	deci- prefix one tenth
$1 \text{ cm} = \frac{1}{100} \text{ m so},$	$1 \text{ dm} = \frac{1}{10} \text{ m so},$
1 cm ³ = $\left(\frac{1}{100}\right)^3$ m ³ = $\left(\frac{1}{1000000}\right)$ m ³	1 dm ³ = $\left(\frac{1}{10}\right)^3$ m ³ = $\left(\frac{1}{1000}\right)$ m ³

1. Complete the table by choosing the approximate volume from the options in bold for each of the everyday items (images not drawn to scale). (1 mark)

1 cn	1 ³ .	1 dm ³	1 m ³
			Ó
	drinks bottle	sugar cube	washing machine
Approx. volume			

2. Complete the following sentences;

ROYAL SOCIETY OF **CHEMISTRY** (1 mark)

(3 marks)

To convert a volume in \mathbf{cm}^3 into a volume in \mathbf{dm}^3 , divide by..... To convert a volume in \mathbf{cm}^3 into a volume in \mathbf{m}^3 , divide by.....

- 3. a. A balloon of helium has a volume of 1600 cm³. What is its volume in units of dm³?
 - b. The technician has prepared 550 cm³ of HCl(aq). What is its volume in units of m³?
 - c. An experimental method requires 1.35 dm³ of NaOH(aq). What volume is this in cm³?
 - d. A swimming pool has a volume of 375 m³. What volume is this in cm³?
 - e. A 12 g cylinder of CO₂ contains 6.54 dm³ of gas. What volume of gas is this in units of m³? (5 marks)
- 4. Which cylinder of propane gas is the best value for money?

© Royal Society of Chemistry, registered charity number 207890. This resource is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. To view a copy of the licence, visit <u>https://creativecommons.org</u>. Images © Shutterstock.

0.2.6. Unit conversions 1 - Length, mass and time

1.	12 mm	(1 mark)
2.	72.00 m	(1 mark)
3.	270 s	(1 mark)
4.	154 s	(1 mark)
5.	2 h 25 min	(1 mark)
6.	15.5 t	(1 mark)
7.	26.5 g	(1 mark)
8.	75 mg/tablet = 0.075 g/tablet 1 g \div 0.075 g/tablet = 13.3 tablets Minimum number of tablets needed = <u>14</u>	(1 mark)
9.	30 g/min	(1 mark)

NOTE In this example, as you are converting 1/the unit, you need to do the inverse of what is described in the diagram eg instead of \div 60, \times 60.

(1 mark)

10. 10.44 kg/h = 10 440 g/h = 174 g/min = <u>2.9 g/s</u>

0.2.7. Unit conversions 2 – Volume

1.	drir	nks bottle, 1 dm³; sugar cube, 1 cm³; washing machine, 1 m³	(1 mark)
2.	То	convert a volume in cm ³ into a volume in dm ³ , divide by 1000.	(½ mark)
	То	convert a volume in cm ³ into a volume in m ³ , divide by 1 000 000.	(½ mark)
3.	a.	1.6 dm ³	(1 mark)
	b.	5.5 × 10 ⁻⁴ m ³	(1 mark)
	c.	1350 cm ³	(1 mark)
	d.	375 000 000 cm ³	(1 mark)
	e.	0.006 54 m ³	(1 mark)
4.			

	£ per m ³		p per cm ³		p per dm ³
Cylinder 'a'	7.27	or	7.27 × 10 ⁻⁴	or	0.727
Cylinder 'b'	7.87		7.87 × 10 ⁻⁴		0.787
Cylinder 'c'	4.11		4.11 × 10 ⁻⁴		0.411

Therefore 'c' is the best value for money.

© Royal Society of Chemistry, registered charity number 207890. This resource is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. To view a copy of the licence, visit <u>https://creativecommons.org</u>. Images © Shutterstock.