

STARTER FOR 10...

0.2.6. Unit conversions 1 - Length, mass and time

Mo's teacher has drawn a diagram on the board to help him with converting quantities from one unit into another.

For example, to convert a length in millimetres into units of centimetres, divide by 10 , eg $10 \mathrm{~mm}=1 \mathrm{~cm}$.

Use the diagram to help with the following unit conversions.

1. A block of iron has a length of 1.2 cm . Calculate its length in millimetres.
2. The width of the classroom is 7200 cm . Calculate its length in metres.
3. A reaction reaches completion after $41 / 2$ minutes. Convert this time into seconds.
4. The stop clock reads 2 min 34 s . Convert this time into seconds.
5. A method states that a reaction needs to be heated under reflux for 145 min . Calculate this time in hours and minutes.
6. A factory produces 15500 kg of ammonia a day. Calculate the mass of ammonia in tonnes.
7. A paper reports that 0.0265 kg of copper oxide was added to an excess of sulfuric acid. Convert this mass of copper oxide into grams.
8. A packet of aspirin tablets states that each tablet contains 75 mg of aspirin. Calculate the minimum number of tablets that contain a total of 1 g of aspirin.
9. A student measures a reaction rate to be $0.5 \mathrm{~g} / \mathrm{s}$. Convert the rate into units of $\mathrm{g} / \mathrm{min}$.
10. A factory reports that it produces fertiliser at a rate of $10.44 \mathrm{~kg} / \mathrm{h}$. Calculate the rate in units of g / s.

STARTER FOR 10...

0. TRANSITION SKILLS Answers

0.2.6. Unit conversions 1 - Length, mass and time

1. $\quad 12 \mathrm{~mm}$
(1 mark)
2. $\quad 72.00 \mathrm{~m}$
3. 270 s
4. 154 s
5. 2 h 25 min
6. 15.5 t
7. 26.5 g
8. $75 \mathrm{mg} /$ tablet $=0.075 \mathrm{~g} /$ tablet
$1 \mathrm{~g} \div 0.075 \mathrm{~g} /$ tablet $=13.3$ tablets
Minimum number of tablets needed $=\underline{14}$
9. $30 \mathrm{~g} / \mathrm{min}$

NOTE In this example, as you are converting 1/the unit, you need to do the inverse of what is described in the diagram eg instead of $\div 60, \times 60$.
10. $10.44 \mathrm{~kg} / \mathrm{h}=10440 \mathrm{~g} / \mathrm{h}=174 \mathrm{~g} / \mathrm{min}=2.9 \mathrm{~g} / \mathrm{s}$
(1 mark)

0.2.7. Unit conversions 2 - Volume

1. drinks bottle, $1 \mathrm{dm}^{3}$; sugar cube, $1 \mathrm{~cm}^{3}$; washing machine, $1 \mathrm{~m}^{3}$
(1 mark)
2. To convert a volume in $\mathbf{c m}^{\mathbf{3}}$ into a volume in $\mathbf{d m}^{\mathbf{3}}$, divide by 1000.
(1/2 mark)
To convert a volume in $\mathbf{c m}^{\mathbf{3}}$ into a volume in $\mathbf{m}^{\mathbf{3}}$, divide by 1000000.
(1/2 mark)
3. a. $1.6 \mathrm{dm}^{3}$
(1 mark)
b. $\quad 5.5 \times 10^{-4} \mathrm{~m}^{3}$
(1 mark)
c. $\quad 1350 \mathrm{~cm}^{3}$
(1 mark)
d. $\quad 375000000 \mathrm{~cm}^{3}$
(1 mark)
e. $\quad 0.00654 \mathrm{~m}^{3}$
4.

	$\mathbf{£ ~ p e r ~ m}^{\mathbf{3}}$		$\mathbf{p ~ p e r ~ c m}^{\mathbf{3}}$		p per dm $^{\mathbf{3}}$
Cylinder 'a'	7.27	or	7.27×10^{-4}	or	0.727
Cylinder 'b'	7.87		7.87×10^{-4}		0.787
Cylinder 'c'	4.11		4.11×10^{-4}		0.411

Therefore ' c ' is the best value for money.

