

STARTER FOR 1044

0.2.6. Unit conversions 1 – Length, mass and time

Mo's teacher has drawn a diagram on the board to help him with converting quantities from one unit into another.

For example, to convert a length in millimetres into units of centimetres, divide by 10, eg 10 mm = 1 cm.

Use the diagram to help with the following unit conversions.

(10 marks)

- A block of iron has a length of 1.2 cm. Calculate its length in millimetres.
- 2. The width of the classroom is 7200 cm. Calculate its length in metres.
- 3. A reaction reaches completion after 4½ minutes. Convert this time into seconds.
- **4.** The stop clock reads 2 min 34 s. Convert this time into seconds.
- **5.** A method states that a reaction needs to be heated under reflux for 145 min. Calculate this time in hours and minutes.
- 6. A factory produces 15 500 kg of ammonia a day. Calculate the mass of ammonia in tonnes.
- **7.** A paper reports that 0.0265 kg of copper oxide was added to an excess of sulfuric acid. Convert this mass of copper oxide into grams.
- **8.** A packet of aspirin tablets states that each tablet contains 75 mg of aspirin. Calculate the minimum number of tablets that contain a total of 1 g of aspirin.
- **9.** A student measures a reaction rate to be 0.5 g/s. Convert the rate into units of g/min.
- 10. A factory reports that it produces fertiliser at a rate of 10.44 kg/h. Calculate the rate in units of g/s.

0. TRANSITION SKILLS Answers

0.2.6. Unit conversions 1 - Length, mass and time

1.	12 mm	(1 mark)
2.	72.00 m	(1 mark)
3.	270 s	(1 mark)
4.	154 s	(1 mark)
5.	2 h 25 min	(1 mark)
6.	15.5 t	(1 mark)
7.	26.5 g	(1 mark)
8.	75 mg/tablet = 0.075 g/tablet 1 g \div 0.075 g/tablet = 13.3 tablets Minimum number of tablets needed = $\underline{14}$	(1 mark)
9.	30 g/min	(1 mark)
	NOTE In this example, as you are converting 1/the unit, you need to do the inverse of what is in the diagram eg instead of \div 60, \times 60.	described
10.	10.44 kg/h = 10 440 g/h = 174 g/min = <u>2.9 g/s</u>	(1 mark)

0.2.7. Unit conversions 2 – Volume

1.	drin	ks bottle, 1 dm ³ ; sugar cube, 1 cm ³ ; washing machine, 1 m ³	(1 mark)
2.		convert a volume in cm ³ into a volume in dm ³ , divide by 1000.	(½ mark) (½ mark)
3.	a. b. c. d. e.	1.6 dm ³ $5.5 \times 10^{-4} \text{ m}^3$ 1350 cm ³ 375 000 000 cm ³ 0.006 54 m ³	(1 mark) (1 mark) (1 mark) (1 mark) (1 mark)

4

	£ per m ³		p per cm ³		p per dm ³
Cylinder 'a'	7.27	or	7.27×10^{-4}	or	0.727
Cylinder 'b'	7.87		7.87 × 10 ⁻⁴		0.787
Cylinder 'c'	4.11		4.11 × 10 ⁻⁴		0.411

Therefore 'c' is the best value for money.

© Royal Society of Chemistry, registered charity number 207890. This resource is shared under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. To view a copy of the licence, visit https://creativecommons.org. Images © Shutterstock.