

### Questions

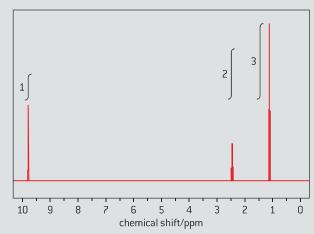
- 1 How many significant figures are in 0.0200 g?
  - A. 1
  - B. 2
  - C. 3
  - D. 5
- **2** A burette reading is recorded as  $27.70 \pm 0.05 \text{ cm}^3$ . Which of the following could be the actual value?
  - I. 27.68 cm<sup>3</sup>
  - II. 27.78 cm<sup>3</sup>
  - III. 27.74 cm<sup>3</sup>
  - A. I and II only
  - B. I and III only
  - C. II and III only
  - D. I, II, and III [1]
  - **IB May 2011**
- 3 A piece of metallic aluminium with a mass of 10.044 g was found to have a volume of 3.70 cm<sup>3</sup>.

A student carried out the following calculation to determine the density:

density (g cm<sup>-3</sup>) = 
$$\frac{10.044}{3.70}$$

What is the best value the student could report for the density of aluminium?

- A.  $2.715 \text{ g cm}^{-3}$
- B.  $2.7 \text{ g cm}^{-3}$
- C.  $2.71 \text{ g cm}^{-3}$
- D.  $2.7146 \text{ g cm}^{-3}$  [1]
- **IB May 2011**
- **4** Which experimental procedure is most likely to lead to a large systematic error?
  - A. Determining the concentration of an alkali by titration with a burette
  - B. Measuring the volume of a solution using a volumetric pipette
  - C. Determining the enthalpy change of neutralization in a beaker


D. Measuring the volume of a gas produced with a gas syringe [1]

#### **IB May 2010**

- 5 Which are likely to be reduced when an experiment is repeated a number of times?
  - A. Random errors
  - B. Systematic errors
  - C. Both random and systematic errors
  - D. Neither random nor systematic errors [1]

#### **IB November 2009**

- **6** Deduce the IHD for codeine using section 37 of the *Data booklet*.
- 7 Deduce the IHD for a molecule of molecular formula  $C_5H_{10}N_2$ .
- **8** The <sup>1</sup>H NMR spectrum of **X** with molecular formula C<sub>3</sub>H<sub>6</sub>O is shown below.



Source: SDBSWeb, http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology)

- a) Deduce which of the following compounds is X and explain your answer. [2]
   CH<sub>3</sub>-CO-CH<sub>3</sub>; CH<sub>3</sub>-CH<sub>2</sub>-CHO;
   CH<sub>3</sub>=CH-CH<sub>2</sub>OH
- **b)** Deduce which one of the signals in the <sup>1</sup>H NMR spectrum of **X** would also occur in the spectrum of one of the other isomers, giving your reasoning. [2]

- **c)** The infrared and mass spectra for **X** were also recorded.
  - (i) Apart from absorptions due to C-C and C-H bonds, suggest one absorption, in wavenumbers, that would be present in the infrared spectrum.

spectrum. [1]
(ii) Apart from absorptions due to
C-C and C-H bonds, suggest **one**absorption, in wavenumbers, absent
in this infrared spectrum, but present

in one of the other compounds shown in part **a**). [1]

**d)** Suggest the formulas and *m*/*z* values of **two** species that would be detected in the mass spectrum.

[2]

**IB May 2011** 



# Topic 11 – Measurement and data processing

## End of topic questions (page 289)

- 1. C; note that each trailing zero is also counted as a significant figure;
- **2.** A; answer II is incorrect, as 27.78 > 27.70 + 0.05 = 27.75
- 3. C; the least precise value (3.70 cm³) has three SF, so the answer should also be rounded to three SF;
- **4.** C; a typical laboratory beaker has no thermal insulation; the error will be caused by the loss of heat to the environment;
- **5.** A; in contrast to systematic errors, random errors tend to cancel one another when the experiment is repeated several times;
- **6.** the molecular formula of codeine is  $C_{18}H_{21}N_1O_3$ , so  $IHD=18-0.5\times21+0.5\times1+1=9$ ; the same result can be obtained by counting rings and  $\pi$ -bonds: there are five rings, one double C=C bond, and one aromatic system of six  $\pi$ -electrons (equivalent to three  $\pi$ -bonds), so IHD=5+1+3=9
- 7.  $IHD = 5 0.5 \times 10 + 0.5 \times 2 + 1 = 2$
- **8. a)** CH<sub>3</sub>-CH<sub>2</sub>-CHO; the spectrum shows three different chemical environments of H atoms, so it cannot be CH<sub>3</sub>-CO-CH<sub>3</sub> (it has only one chemical environment of H atoms) or CH<sub>2</sub>=CH-CH<sub>2</sub>OH (it has four chemical environment of H atoms); also, the integration ratio of signals is 3 : 2 : 1, which is true only for CH<sub>3</sub>-CH<sub>2</sub>-CHO; finally, the signal in the 9.4–10 ppm region can belong only to the CHO group (all other signals will appear below 7 ppm);
  - b) this question is somewhat incorrect, as no two signals in these compounds will have *exactly* the same chemical shift and shape; however, the signal of the CH<sub>3</sub> group in CH<sub>3</sub>-CO-CH<sub>3</sub> will have approximately the same chemical shift (2.2–2.7 ppm) as the signal of the CH<sub>2</sub> group in CH<sub>3</sub>-CH<sub>3</sub>-CH<sub>0</sub> (2.5 ppm), as both groups are adjacent to a carbonyl group;
  - c) i) 1700–1750 cm<sup>-1</sup> due to the aldehyde group (CHO);
    - **ii)** 1620–1680 cm<sup>-1</sup> due to the C=C bond in CH<sub>2</sub>=CH-CH<sub>2</sub>OH and 3200–3600 cm<sup>-1</sup> due to the hydrogen bonding in alcohols (O-H bond in the same compound);
  - **d)**  $C_3H_6O^{\bullet+}$  with  $\frac{m}{Z} = 58$  (molecular ion), CHO<sup>+</sup> with  $\frac{m}{Z} = 29$  (loss of  $C_2H_5$  group),  $C_2H_5O^+$  with  $\frac{m}{Z} = 29$  (loss of CHO group), CH<sub>3</sub><sup>+</sup> with  $\frac{m}{Z} = 15$  (loss of CH<sub>2</sub>CHO fragment).