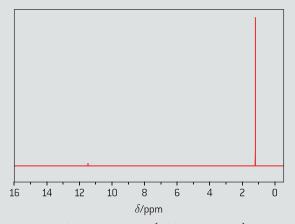

Questions

1 An unknown compound, X, of molecular formula, C₃H₆O₂, has the following IR and ¹H NMR spectra.

▲ Figure 12 IR spectrum of X (in CCI,) solution

▲ Figure 13 ¹H NMR spectrum (90 MHz in CDCl₂) of X


The MS of X showed peaks at m/z values = 74, 45, and 29 (other peaks were also found).

Deduce the structure of X using the information given and any other additional information from the *Data booklet*. For each spectrum assign as much spectroscopic information as possible, based on the structure of X.

2 An unknown compound, Y, of molecular formula, C₅H₁₀O₂, has the following IR and ¹H NMR spectra.

▲ Figure 14 IR spectrum of Y (in CCI₁) solution

▲ Figure 15 ¹H NMR spectrum (300 MHz in CDCI₂) of Y

The MS of, Y, showed peaks at m/z values = 102 and 57 (other peaks were also found).

Deduce the structure of Y using the information given and any other additional information from the *Data booklet*. For each spectrum assign as much spectroscopic information as possible, based on the structure of Y.

Topic 21 — Measurement and analysis (AHL)

Quick question (page 469)

The peaks with $\frac{m}{Z} = 59$ and 60 are probably produced by the molecules of propanal that contain heavier isotopes of carbon (13 C instead of 12 C) and/or hydrogen (2 H instead of 1 H); other peaks (with $\frac{m}{Z} = 69-75$) probably belong to some impurities in the analysed sample of propanal;

End of topic questions (page 470)

1. The *IHD* (see Chapter 11) for $C_3H_6O_2$ is $3-0.5\times 6+1=1$, so compound **X** contains either one double bond or one ring; the strong absorption at 1710 cm⁻¹ in the IR spectrum suggests the presence of a carbonyl group, so the compound is probably acyclic; the signal at 11.7 ppm in the ¹H NMR spectrum and the peak with $\frac{m}{Z}=45$ in the mass spectrum suggest the presence of a COOH group, so compound **X** is a carboxylic acid; this is consistent with the IR spectrum, which shows a very broad absorption of the O–H bond in the 3000 cm⁻¹ region.

Therefore, the formula of \mathbf{X} is CH_3-CH_2-COOH (propanoic acid).

Note: another possible structure, $CH_3 - CH_2 - O - CHO$ (ethyl formate), is inconsistent with the ¹H NMR spectrum (as the signal of the CHO group would appear at 9.4–10 ppm) and the IR spectrum (there would be no broad O-H absorption in the 3000 cm⁻¹ region).

The spectroscopic information for compound **X** is summarized below:

IR spectrum

Absorption / cm ⁻¹	Bond(s) involved
2800–3300 (strong, very broad)	0-H (in the hydrogen-bonded COOH group)
2900—3000 (several medium peaks)	C $-$ H (in CH $_{_2}$ and CH $_{_3}$ groups)
1710 (strong)	C $=$ 0 (in the COOH group)
1250 (strong)	probably C $-$ 0 (in the COOH group)

¹H NMR spectrum

Chemical	shift / ppm	Splitting pattern	Number of protons at adjacent atoms	Hydrogen environment
1	1.7	singlet	0	СООН
	2.4	quartet	3	CH ₂
	1.1	triplet	2	CH ₃

Mass spectrum

Peak with <i>m/z</i> of	Produced by	Due to the loss of
74	C ₃ H ₆ O ₂ +• (molecular ion)	_
45	COOH ⁺	C ₂ H ₅ *
29	$C_2H_5^+$	C00H•

2. The solutions for this and previous questions are similar: the *IHD* for $C_5H_{10}O_2$ (5 – 0.5 × 10 + 1 = 1) and the strong absorption at 1700 cm⁻¹ in the IR spectrum of **Y** suggest the presence of a carbonyl group; the signal at 11.4 ppm in the ¹H NMR spectrum and the broad absorption in the 3000 cm⁻¹ region of the IR spectrum belong to a COOH group, so compound **Y** is also a carboxylic acid.

There are only two signals in the 1 H NMR spectrum of **Y**: if the H atom of the COOH group in $C_5H_{10}O_2$ produces the signal at 11.4 ppm, then the other nine H atoms must be in the same chemical environment (as they produce only one sharp signal at 1.2 ppm); in addition, the signal at 1.2 ppm is a singlet, so the molecule of **Y** must not contain any adjacent CH₂ groups; such

an arrangement of atoms takes place in a *tert*-butyl group, $(CH_3)_3C$ —; the presence of this group is consistent with the mass spectrum of **Y**, where the peak with $\frac{m}{Z} = 57$ can be produced by a $C_4H_9^+$ ion.

Therefore, the formula of \mathbf{Y} is $(CH_3)_3C-COOH$ (2,2-dimethylpropanoic acid).

The spectroscopic information for compound **Y** is summarized below:

IR spectrum

Absorption / cm ⁻¹	Bond(s) involved
2800–3300 (strong, very broad)	0-H (in the hydrogen-bonded COOH group)
2900—3000 (several medium peaks)	С $-$ H (in СН $_{_3}$ groups)
1700 (strong)	C $=$ 0 (in the COOH group)
1200 (strong)	probably C $-$ 0 (in the COOH group)

¹H NMR spectrum

Chemical shift / ppm	Splitting pattern	Number of protons at adjacent atoms	Hydrogen environment
11.4	singlet	0	СООН
1.2	singlet	0	(CH ₃) ₃ C

Mass spectrum

Peak with <i>m/z</i> of	Produced by	Due to the loss of
102	$C_5H_{10}O_2^{+\bullet}$ (molecular ion)	_
57	$C_4H_9^+$	C00H•