1. Haloalkane A is treated with sodium hydroxide
 (a) Predict the 2 possible products arising from OH- carrying out a substitution or elimination
 mechanism, draw the structures and name them. (4 marks)

2. State the role of OH- in the mechanisms leading to these products (2 marks)

3. How do the reaction conditions change in order to select one product over the other one? (2 marks)

4. If you wanted to regenerate A from the elimination product, what reagent would you use and what
 mechanism would it proceed by? (2 marks)
5.3.2

1. (a) Substitution
 - butan-1-ol

\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{C} \text{=C} \\
\text{H} \\
\text{H} \\
\text{OH} \\
\end{array}
\quad \text{H} \quad \text{C} \quad \text{H} \quad \text{H} \quad \text{Br} \\
\quad \text{H} \quad \text{H} \quad \text{H} \\
\quad \text{H} \quad \text{H} \\
\quad \text{H} \\
\end{array}
\]

Elimination
- the OH acts as a base

\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{C} \text{=C} \\
\text{H} \\
\text{H} \\
\text{H} \quad : \text{OH} \\
\end{array}
\quad \text{CH}_3\text{CH}_2 \quad \text{H} \\
\quad \text{C} \quad \text{=C} \\
\quad \text{H} \quad \text{H} \\
\end{array}
\]

2. Substitution – the OH- acts as a nucleophile
 Elimination – the OH- acts as a base

3. Substitution – aqueous NaOH
 Elimination – ethanolic NaOH

4. H-Br, electrophilic addition

5.3.3

1. C + E
2. A + B
3. A, B, D, E, F, G

5.3.4

1. Glucose
 - (1 mark)

\[
\begin{array}{c}
\text{H} \\
\text{H} \\
\text{C} \text{=C} \\
\text{H} \\
\downarrow \text{H}_2\text{O, heat} \\
\end{array}
\quad \text{H}_2\text{SO}_4 \\
\quad \text{Ethanol} \\
\quad \text{CH}_3\text{CHO} \\
\quad \text{K}_2\text{Cr}_2\text{O}_7 \\
\quad \text{CH}_3\text{COOH} \\
\end{array}
\]

\[
\begin{array}{c}
\text{B} \\
\text{Yeast} \\
\end{array}
\]