

Complete the table about each of the following synthetic paths.

conversion	$A \rightarrow B$	$B \rightarrow C$	$C \rightarrow D$
reaction type	addition	substitution	oxidation
mechanism name (if taught)	electrophilic addition	nucleophilic substitution	
reagents & conditions	HBr	NaOH, warm, aqueous	K ₂ Cr ₂ O ₇ , H ₂ SO ₄

conversion	E→F	$F \to G$	$G \to H$
reaction type	nitration	reduction	acylation
mechanism name (if taught)	electrophilic substitution		nucleophilic addition- elimination
reagents & conditions	conc HNO₃, conc H₂SO₄, warm	Sn, HCI (followed by NaOH)	ethanoyl chloride or ethanoic anhydrode

conversion	$I \rightarrow J$	$J\toK$	$K \rightarrow L$
reaction type	substitution	reduction	substitution
mechanism name (if taught)	nucleophilic substitution		nucleophilic substitution
reagents & conditions	KCN, alcoholic, warm	LiAlH ₄ (or Ni + H ₂)	excess CH₃Br