Ethane reacts with chlorine in the presence of uv light to form a mixture of halogenoalkanes.

- 1 Write an equation for the initiation step. $Cl_2 \rightarrow 2Cl_2$
- 2 What is the uv light for? Provides energy to break the covalent bond in Cl₂
- **3** Two of the products in this reaction are chloroethane and 1,1-dichloroethane.
 - **a** Write a balanced equation for the reaction of chlorine with ethane to form chloroethane.

 $CH_3CH_3 + Cl_2 \rightarrow CH_2ClCH_3 + HCl$

b Write a balanced equation for the reaction of chlorine with ethane to form 1,1-dichloroethane.

 $CH_3CH_3 + 2Cl_2 \rightarrow CHCl_2CH_3 + 2HCl$

4 One of the products from this reaction is chloroethane. Write a pair of propagation steps to form chloroethane from ethane.

 $CH_{3}CH_{3} + Cl_{\bullet} \rightarrow \bullet CH_{2}CH_{3} + HCl$ $\bullet CH_{2}CH_{3} + Cl_{2} \rightarrow CH_{2}ClCH_{3} + Cl_{\bullet}$

5 One of the products from this reaction is 1,1-dichloroethane. Write a pair of propagation steps to form 1,1-dichloroethane from chloroethane.

 $CH_2CICH_3 + CI_{\bullet} \rightarrow \bullet CHCICH_3 + HCI$ $\bullet CHCICH_3 + CI_2 \rightarrow CHCI_2CH_3 + CI_{\bullet}$

6 What would be the product of the reaction of ethane with a large excess of chlorine in the presence of uv light?

CCl₃CCl₃

7 Some 1,2-dichloroethane can be formed in a termination step. Write an equation to show how this can happen.

•CH₂CH₂Cl + Cl• \rightarrow CH₂ClCH₂Cl