ALKENES (C)

1 a Complete the table about some addition polymers.

monomer		polymer		
name	structure	name	structure	repeating unit
propene	CH₃ 	poly(propene)	CH₃ CH—CH₂ n	CH ₃
methylpropene	CH ₃ C CH ₂ CH ₃	poly(methylpropene)	CH_3 CH_2 CH_2 CH_3	CH ₃ ——C——CH ₂ —— ———

b Explain why the addition polymers shown in the table are not biodegradable.

chain contains non-polar C-C bonds; not susceptible to attack by acid / alkali / electrophile / nucleophile

2 a Write an equation for the formation of the main product from the reaction of 2-methylbut-2-ene with hydrogen bromide.

$$CH_3$$
 CH_3 CH_3

b Name and outline the mechanism for this reaction.

$$CH_{3} \longrightarrow CH_{2} \longrightarrow CH_{3} \longrightarrow CH_{3} \longrightarrow CH_{2} \longrightarrow CH_{3}$$

$$CH_{3} \longrightarrow CH_{2} \longrightarrow CH_{3} \longrightarrow C$$

c Explain why this is the main product formed.

major product is formed from tertiary carbocation minor product is formed from secondary carbocation tertiary carbocation is more stable than secondary carbocation

3 Draw the structure of each of these alkenes and then state which exist as *E-Z* stereoisomers.

name	pent-1-ene	pent-2-ene	1-bromo-3-ethylhex-3-ene
structure	CH ₂ ==CHCH ₂ CH ₃	CH ₃ —CH—CH—CH ₂ —CH ₃	CH ₃ Br CH ₂ CH ₂ —CH ₂ —CH—CH ₂ —CH ₃
E-Z stereoisomers?	no	yes	yes

© www.CHEMSHEETS.co.uk 3-Mar-2018 Chemsheets AS 1204