

Free radicals are formed from homolytic bond breaking, where a bond breaks and each atom gets one of the electrons. Alkanes react via a free radical substitution mechanism which has 3 stages, initiation, propagation and termination.

For methane initiation and propagation steps are as follows

- Using your knowledge of the free radicals in the mixture, predict the 3 possible termination steps. (3 marks)
- If chlorine is in excess then substitution of the product chloromethane can occur through a series of propagation steps. Show by a series of reactions how this can lead to the formation of the carcinogen tetrachloromethane (CCl₄).
- 3. Predict a termination step that could lead to the formation of a product with the empirical formula CHCl₂.

(1 mark)

- (b) Branched chain isomers have a lower bpt/straight chain alkanes have a higher bpt
- (c) Straight chain alkanes have a higher surface contact (1 mark) therefore greater VdW forces (1 mark)

5.2.5

1. No C=C bonds

- **3.** C₈H₁₈
- **4.** (a)

CO is poisonous/water vapour is a greenhouse gas

5.2.6

Question 1

Question 2 (Successive substitutions on the alkyl radical)

CH ₃ CI	+	CI۰	>	• CH ₂ CI	+ HCI
· CH₂CI	+	CI_2	>	CH ₂ Cl ₂	+ CI∙
CH_2CI_2	+	CI۰	>	\cdot CHCI ₂	+ HCI
\cdot CHCl ₂	+	CI_2		CHCI ₃	+ CI·
CHCI ₃	+	CI۰	>	$\cdot \text{CCl}_3$	+ HCI
$\cdot \text{CCI}_3$	+	CI_2	>	CCI ₄	+ CI∙
Question 3					

2 · CHCl₂ → CHCl₂CHCl₂

5.2.7

1.

(a) O₃

Chapter 5 Answers