

TRANSITION METALS (B)

1 Give the full electron configuration of the following atoms and ions.

a Cr atom
$$1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$$
 (1)

b
$$Cr^{3+}$$
 ion $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$ (1)

- 2 The complex $[Cu(H_2O)_6]^{2+}$ reacts irreversible with Na₄EDTA.
 - **a** Write an equation for the reaction.

$$[Cu(H_2O)_6]^{2+} + EDTA^{4-} \rightarrow [Cu(EDTA)]^{2-} + 6H_2O$$

b Explain clearly why this reaction is irreversible.

for reverse reaction ΔH is negligible as same number of similar bonds are broken and formed for reverse reaction ΔS is very negative as go from 7 to 2 aqueous particles therefore ΔG for reverse reaction is very positive

(5)

3 Complete the table about the following complex ions.

Complex	[Ni(NH ₂ CH ₂ CH ₂ NH ₂) ₃] ³⁺	[CuCl ₄] ²⁻
Sketch of shape	$\begin{bmatrix} H_2N & NH_2 \\ H_2N & NH_2 \\ H_2N & NH_2 \end{bmatrix}$	CI CI 2-
Name of shape	octahedral	tetrahedral
Bond angles	90°	109.5°
Ligand	NH ₂ CH ₂ CH ₂ NH ₂	сг
Co-ordination number	6	4
Oxidation state of metal	+3	+2

© www.CHEMSHEETS.co.uk 7-Oct-2017 Chemsheets A2 1123