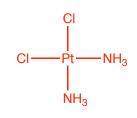


1 Give the full electron configuration of the following atoms and ions.

а	Co atom	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁷	(1)
b	Co ²⁺ ion	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷	(1)


- 2 The complex [Pt(NH₃)₂Cl₂] exists as two stereoisomers.
 - a What are stereoisomers?

same structural formula but different arrangement of atoms in space

b Draw the cis stereoisomer, name its shape, ligand-Pt-ligand bond angles, give its co-ordination number and oxidation state of the platinum.

Name of shape = square planar ligand-Pt-ligand bond angles = 90° Co-ordination number = 4

Oxidation state of Pt = +2

(5)

(2)

(1)

3 a A complex absorbs visible light at 582 nm. Calculate the energy gap between the d orbitals in J. [Planck's constant is 6.63×10^{-34} Js and the velocity of light is 3.00×10^8 ms⁻¹]

 $\Delta E = hf = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{582 \times 10^{-9}} = 3.42 \times 10^{-19} J$ (3)

b Calculate the energy gap between the d orbitals in kJ mol⁻¹. [the Avogadro constant (*L*) is $6.022 \times 10^{23} \text{ mol}^{-1}$]

$$\Delta E = 3.42 \times 10^{-19} \times 6.022 \times 10^{23} = 2.06 \times 10^5 \text{ J mol}^{-1} = 206 \text{ kJ mol}^{-1}$$