

1 Calculate the entropy change for the vaporisation of methanol (CH₃OH) given this data.

enthalpy of vaporisation of methanol = $+35.2 \text{ kJ mol}^{-1}$ boiling point of methanol = +64.7 °C

```
at the boiling point, \Delta G = 0 \Delta H - T\Delta S = 0
\Delta S = \frac{\Delta H}{T} = \frac{35200}{337.7} = 104 \text{ J mol}^{-1} \text{ K}^{-1}
```

2 Tungsten can be extracted from tungsten oxide by reaction with hydrogen. The reaction is not feasible at room temperature. Calculate the temperature at which this reaction becomes feasible.

```
WO_3(s) + 3H_2(g) \rightarrow W(s) + 3H_2O(g)
```

substance	WO ₃ (s)	H ₂ (g)	W(s)	H ₂ O(g)
$\Delta_{\rm f} {\rm H}^{\rm \Theta}$ (kJ mol ⁻¹)	-840			-242
S^{e} (J mol ⁻¹ K ⁻¹)	+83.3	+131	+33	+189

- $\Delta H = [Sum \Delta_f H \text{ products}] [Sum \Delta_f H \text{ reactants}]$
 - = [3(-242)] [-840]
 - $= +114 \text{ kJ mol}^{-1}$
- **∆S** = [Sum S products] [Sum S reactants]
 - = [33 + 3(189)] [83.3 + 3(131)]
 - = +123.7 J mol⁻¹ K⁻¹

when $\Delta G = 0$ $\Delta H - T\Delta S = 0$ T = $\frac{\Delta H}{4} = \frac{114}{1327} = 922 \text{ K}$

$$\Delta S = \frac{123.7}{1000}$$