

ENERGETICS (D)

E	•	es: H-H = 463 porisation of w					
Calcu	late the entha	alpy of formatio	n of prop	oan-1-ol, C₃H ₇	OH(I), given the	following data.	
	Δ _c H C ₃ H ₇ OF	H(I) = -2010 kJ	mol ⁻¹	$\Delta_{c}H C(s) = -$	394 kJ mol ⁻¹	$\Delta_{c}H H_{2}(g) = 0$	–286 kJ mol ^{–1}
Calcu	late the entha	alpy of formatio	on of amr	nonium chloric	de give the follow	ving information.	
2	2NH₄Cl(s) + C	$Ca(OH)_2(s) \rightarrow 2$	2NH₃(g) -	- CaCl ₂ (s) + 2	$H_2O(g)$ $\Delta H =$	+246 kJ mol ⁻¹	
Δ	_{-f} H / kJ mol ⁻¹	$Ca(OH)_2(s) =$	= –987	$NH_3(g) = -46$	CaCl ₂ = -795	$H_2O(g) = -2$	242
calori	meter. The te	emperature of	the wate	r rose by 38°0	C. Calculate the	to heat 100.0 g enthalpy of com	bustion of me
calori	meter. The te	emperature of	the wate	r rose by 38°0	C. Calculate the		bustion of me
calori	meter. The te	emperature of	the wate	r rose by 38°0	C. Calculate the	enthalpy of com	bustion of me

© www.CHEMSHEETS.co.uk 16-Mar-2017 Chemsheets AS 1206