

RATES OF REACTION (B)

A reacts with B in the presence of C to make D. $A + B \rightarrow D$

A series of experiments was carried out to determine the rate equation for this reaction.

Experiment	initial [A] (mol dm ⁻³)	initial [B] (mol dm ⁻³)	initial [C] (mol dm ⁻³)	initial rate (mol dm ⁻³ s ⁻¹)
1	0.200	0.300	0.100	0.160
2	0.200	0.150	0.100	0.040
3	0.100	0.600	0.100	0.640
4	0.300	0.150	0.200	0.080

a Determine the order with respect to [A] 0 [B] 2 [C] 1

b State the rate equation. rate = k [B]² [C]

c Determine the value of the rate constant.

rate =
$$k [B]^2 [C]$$

$$k = \frac{\text{rate}}{[B]^2 [C]} = \frac{0.160}{[0.300]^2 [0.100]} = 17.8$$

d Determine the units of the rate constant.

$$k = \frac{(\text{mol dm}^{-3}) s^{-1}}{(\text{mol dm}^{-3})^3} = \frac{s^{-1}}{(\text{mol dm}^{-3})^2} = \frac{s^{-1}}{\text{mol}^2 dm^{-6}} = \text{mol}^{-2} dm^6 s^{-1}$$

e State the role of C in this reaction. Explain your answer.

catalyst - appears in the rate equation but not the stoichiometric equation

f Why are the initial rates used in each case in these experiments?

rates change during the experiment – need to compare at the same stage and so must use the start

© www.CHEMSHEETS.co.uk 15-Dec-2017 Chemsheets A2 1142