

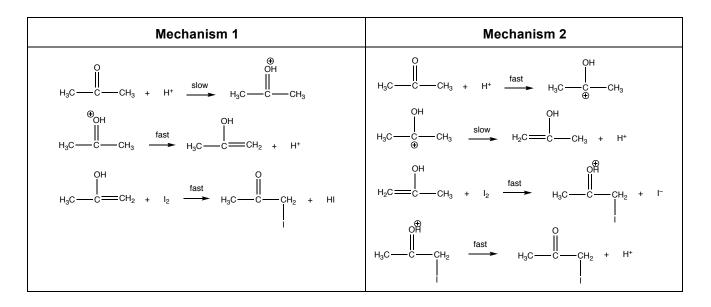
0

Propanone reacts with iodine in the presence of an acid catalyst.

0 CH₂ H₃C CH₃ HI H₃C

A series of experiments were carried out to determine the rate equation.

[CH ₃ COCH ₃] (mol dm ⁻³)	$[l_2]$ (mol dm ⁻³)	$[H^+]$ (mol dm ⁻³)	rate (mol $dm^{-3} s^{-1}$)
2.00	0.00126	0.248	5.60 x 10 ⁻⁶
4.00	0.00126	0.248	1.12 x 10 ^{−5}
2.00	0.00252	0.248	5.60 x 10 ⁻⁶
2.00	0.00504	0.496	1.12 x 10 ^{−5}


a What is the order of reaction with respect to? [CH₃COCH₃] 1 [l₂] 0 [H⁺] 1

What is the rate equation? rate = $k [CH_3COCH_3] [H^+]$ b

- c Calculate the rate constant, including units.
 - $\frac{5.60 \times 10^{-6}}{2.00 \times 0.248} = 1.13 \times 10^{-5} \text{ mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ rate = k = [CH₂COCH₂] [H⁺]
- d Two proposed mechanisms for this reaction are shown. Which of these mechanisms, if any, is feasible for this rate equation.

Mechanism 1 yes - this is feasible

Mechanism 2 yes - this is feasible

