

KINETICS (A)

- 1 The Maxwell-Boltzmann distribution is shown for the particles in a gas at temperature T_1
 - a Label both axes.
 - **b** Mark the most probable energy of the molecules at T_1 (label this E_{mo1})
 - ${f c}$ Sketch another distribution to show the same sample at a lower temperature ${f T}_2$
 - **d** Mark the most probable energy of the molecules at T_2 (label this E_{mp2})

- 2 Magnesium reacts with hydrochloric acid to form hydrogen gas. A graph is shown showing the volume of hydrogen varies with time when 25 cm³ of 0.500 mol dm⁻³ reacts with an excess of magnesium at 20°C.
 - a Sketch a line to show how the volume of hydrogen changes if a similar reaction was carried out but with 50 cm³ of 0.250 mol dm⁻³ (label this A)
 - **b** Sketch a line to show how the volume of hydrogen changes if a similar reaction was carried out but with 25 cm³ of 0.750 mol dm⁻³ at 40°C (label this **B**)

time

C	Define the term rate of reaction.
d	Explain why rate of reaction increases with concentration.
е	Explain why rate of reaction increases with temperature.