A student carried out an experiment where she recorded the volume of carbon dioxide gas formed as calcium carbonate reacts with hydrochloric acid.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})
$$

The graph shows how the volume of carbon dioxide varied with time.

1
Calculate the mean rate of reaction in the first 20 seconds in $\mathrm{cm}^{3} / \mathrm{s}$
rate $=\frac{55}{20}=2.8 \mathrm{~cm}^{3} / \mathrm{s}$

2 Draw a tangent to the graph to find the rate at 0 seconds in $\mathrm{cm}^{3} / \mathrm{s}$
rate $=\frac{76-0}{20-0}=3.8 \mathrm{~cm}^{3} / \mathrm{s}$

3 Draw a tangent to the graph to find the rate at 20 seconds in $\mathrm{cm}^{3} / \mathrm{s}$
rate $=\frac{80-27}{37-0}=1.4 \mathrm{~cm}^{3} / \mathrm{s}$

4 Explain why the rate is fastest at the beginning and then slows down and stops.
fastest at start: most reactant particles so high frequency of successful collisions slows down: fewer reactant particles so lower frequency of successful collisions stops: no reactant particles so no successful collisions

