

Questions

1 Bromine and nitrogen(II) oxide react according to the following equation.

$$Br_2(g) + 2NO(g) \rightarrow 2NOBr(g)$$

Which rate equation is consistent with the experimental data?

[Br ₂]/ mol dm ⁻³	[NO]/ mol dm ⁻³	Rate/ mol dm ⁻³ s ⁻¹
0.10	0.10	$1.0 imes10^{-6}$
0.20	0.10	$4.0 imes 10^{-6}$
0.20	0.40	$4.0 imes 10^{-6}$

- A. rate = $k[Br_2]^2[NO]$
- B. rate = $k[Br_3][NO]^2$
- C. rate = $k[Br_2]^2$
- D. rate = $k[NO]^2$ [1]

IB May 2011

2 The rate information below was obtained for the following reaction at a constant temperature.

$$2NO_2(g) + F_2(g) \rightarrow 2NO_2F(g)$$

[NO ₂]/ mol dm ⁻³	$[F_2]/$ mol dm $^{-3}$	Rate/ mol dm ⁻³ s ⁻¹
$2.0 imes 10^{-3}$	$1.0 imes10^{-2}$	4.0×10^{-4}
4.0×10^{-3}	$1.0 imes 10^{-2}$	$8.0 imes 10^{-4}$
4.0×10^{-3}	2.0×10^{-2}	1.6×10^{-3}

What are the orders of the reaction with respect to NO₂ and F₂?

- A. NO₂ is first order and F₂ is second order.
- B. NO, is second order and F, is first order.
- C. NO, is first order and F, is first order.
- D. NO, is second order and F, is second order. [1]

IB May 2011

- **3** Which step is the rate-determining step of a reaction?
 - A. The step with the lowest activation energy.
 - B. The final step.
 - C. The step with the highest activation energy.
 - D. The first step. [1]

IB May 2011

4 A student experimentally determined the rate expression to be:

rate =
$$k[S_2O_3^{2-}(aq)]^2$$

Which graph is consistent with this information?

IB May 2010

5 Consider the following reaction:

$$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$$

At T < 227 °C the rate expression is rate = $k[NO_2]^2$. Which of the following mechanisms is consistent with this rate expression?

A.
$$NO_2 + NO_2 \rightleftharpoons N_2O_4$$
 fast
 $N_2O_4 + 2CO \rightarrow 2NO + 2CO_2$ slow

$$B. \ \ NO_2 + CO \rightarrow NO + CO_2 \qquad \qquad slow$$

C.
$$NO_2 \rightarrow NO + O$$
 slow
 $CO + O \rightarrow CO_2$ fast

D.
$$NO_2 + NO_2 \rightarrow NO_3 + NO$$
 slow
 $NO_3 + CO \rightarrow NO_2 + CO_2$ fast [1]

IB May 2010

6 Consider the following reaction.

$$2Q(g) + R(g) \rightarrow X(g) + Y(g)$$

This reaction occurs according to the following mechanism:

$$Q(g) + R(g) \rightarrow X(g) + M(g) \qquad \qquad \textit{slow}$$

$$M(g) + Q(g) \rightarrow Y(g)$$
 fast

Which of the following is correct?

- I. M(g) is a reaction intermediate.
- II. Rate = k[Q][R]
- III. The slow-step is the rate-determining step.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II, and III
- 7 Hydrogen gas, $H_2(g)$, reacts with iodine gas, $I_2(g)$, to form hydrogen iodide, HI(g):

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$

The mechanism of the two-step reaction is considered to be:

$$\begin{array}{ll} \operatorname{step} 1 \colon & \operatorname{I_2(g)} \stackrel{k_1}{\rightleftharpoons} 2\operatorname{I(g)} & \text{\it fast} \\ & k_{-1} & \end{array}$$

step 2:
$$2I(g) + H_2(g) \rightarrow 2HI(g)$$
 slow

What is the rate equation for the overall reaction?

- A. rate = $k[H_2][I]^2$
- B. rate = $k[H_2]$
- C. rate = $k[I_2]$
- D. rate = $k[H_{2}][I_{2}]$
- **8** What are the units of the frequency factor in the Arrhenius equation?
 - A. kJ mol⁻¹
 - B. J mol⁻¹
 - C. s^{-1}
 - D. Depends on the units of k.

9 Ozone is considered to decompose according to the following two-step mechanism:

step 2:
$$O(g) + O_3(g) \rightarrow 2O_2(g)$$
 slow

Which of the following are correct?

- I. The overall reaction is $2O_3(g) \rightarrow 3O_2(g)$.
- II. O(g) is a reaction intermediate.
- III. The rate equation is: $rate = k[O_3]^2[O_2]^3$
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II, and III
- 10 Consider the following reaction:

$$A(g) + B(g) \rightarrow C(g) + D(g)$$

and the following experimental initial rate data:

	[A(g)]/ mol dm ⁻³	[B(g)]/ mol dm ⁻³	Initial rate/ mol dm ⁻³ s ⁻¹
Experiment 1	$1.50 imes 10^{-2}$	1.50×10^{-2}	2.32×10^{-3}
Experiment 2	1.50×10^{-2}	3.00×10^{-2}	4.64×10^{-3}
Experiment 3	3.00×10^{-2}	1.50×10^{-2}	4.64×10^{-3}

- a) Deduce the orders with respect to each reactant and the overall reaction order.
- b) Deduce the rate equation.
- c) Calculate the value of the rate constant,k, for the reaction from experiment 2and state its units.
- d) Determine the rate of the reaction when $[A(g)] = 2.00 \times 10^{-2} \, mol \, dm^{-3} \, and$ $[B(g)] = 4.00 \times 10^{-2} \, mol \, dm^{-3}$
- 11 The rate constant, k_1 , of a first-order reaction is $6.30 \times 10^3 \,\mathrm{s}^{-1}$ at 32 °C and the corresponding rate constant, k_2 , is $2.25 \times 10^5 \,\mathrm{s}^{-1}$ at 83 °C.
 - a) Deduce the activation energy, E_a , in kJ mol⁻¹, correct to **two** significant figures.
 - b) Calculate the rate constant, k_3 , in s⁻¹, at 20 °C.

Topic 16 - Chemical kinetics (AHL)

End of topic questions (page 387)

1. C; in order to solve this question we can use the working method to deduce the rate equation from the method of initial rates:

$$\frac{\text{rate 1}}{\text{rate 2}} = \frac{(0.10)^x}{(0.20)^x} \frac{(0.10)^y}{(0.10)^y} = \frac{1.0 \times 10^{-6}}{4.0 \times 10^{-6}} = (0.5)^x = 0.25, \text{ so } x = 2;$$

$$\frac{\text{rate 2}}{\text{rate 3}} = \frac{(0.20)^x}{(0.20)^x} \frac{(0.10)^y}{(0.40)^y} = \frac{4.0 \times 10^{-6}}{4.0 \times 10^{-6}} = (0.25)^y = 1, \text{ so } y = 0;$$

the reaction is second order with respect to Br₃:

$$rate = k[Br_2]^2$$

2. C;

$$\frac{\text{rate 1}}{\text{rate 2}} = \frac{(0.002)^x}{(0.004)^x} \frac{(0.01)^y}{(0.01)^y} = \frac{4.0 \times 10^{-4}}{8.0 \times 10^{-4}} = (0.5)^x = 0.50, \text{ so } x = 1;$$

$$\frac{\text{rate 2}}{\text{rate 3}} = \frac{(0.004)^x}{(0.004)^x} \frac{(0.01)^y}{(0.02)^y} = \frac{8.0 \times 10^{-4}}{1.6 \times 10^{-3}} = (0.50)^y = 0.5, \text{ so } y = 1;$$

the reaction is first order with respect to NO, and F,;

- **3.** C; reactions may occur by more than one step and the slow step determines the rate of the reaction; the slow step is termed the rate-determining step (RDS); this is the step with the highest activation energy;
- **4.** B; in a a rate—concentration plot for a second order reaction (figure (b)), the rate is directly proportional to the square of the concentration, because rate = $k[A]^2$ for a second order reaction;
- **5.** D;

step 1
$$NO_2 + NO_2 \rightleftharpoons \frac{N_2}{4}$$
 for

$$step \ 2 \hspace{1cm} \textcolor{red}{\mathbb{N}_{\underline{2}}\Theta_{\underline{4}}} + 2CO \rightarrow 2NO + 2CO_{\underline{2}} \hspace{1cm} slow$$

overall
$$2NO_2 + 2CO \rightarrow 2NO + 2CO_2$$

this mechanism does not result in the reaction in question;

$$NO_2 + CO \rightarrow NO + CO_2$$
 slow

this mechanism with one RDS, the rate expression is rate = $k[NO_2][CO]$;

step 1
$$NO_2 \rightarrow NO + \Theta$$
 slow

step 2
$$CO + \Theta \rightarrow CO$$
, fast

overall
$$NO_2 + CO \rightarrow NO + CO_2$$

this mechanism does produce the correct overall equation but not the correct rate expression;

step 1
$$\frac{NO_2}{NO_2} + NO_3 \rightarrow \frac{NO_4}{NO_4} + NO$$
 slow

step 2
$$\frac{N\Theta_2 + CO}{N\Theta_2 + CO_3}$$
 fast

overall
$$NO_2 + CO \rightarrow NO + CO_2$$

this mechanism does produce the correct overall equation and the correct rate expression;

6. D:

step 1
$$Q(g) + R(g) \rightarrow X(g) + M(g)$$
 slow

step 2
$$\frac{M(g)}{} + Q(g) \rightarrow Y(g)$$
 fast

overall
$$2Q(g) + R(g) \rightarrow X(g) + Y(g)$$

rate =
$$k[Q][R]$$
;

an analysis of the working above determines that all three statements are valid;

- **7.** D; the iodine atom is a reaction intermediate; be careful that this does not mask the fact that iIodine (I) is important in the understanding of this mechanism; as a reaction intermediate, it is formed in the initial *fast* step and is consumed in the subsequent *slow* step; however, its formation and presence in the slow step is dependent on its formation from the iodine molecule (I_2) in the first fast step and for this reason the iodine molecule must be included in the rate expression; the other species in the rate expression will be the hydrogen molecule, hence the rate expression is rate = $k[I_2][H_2]$;
- **8.** D; the frequency factor is essentially the number of times reactants will approach the activation energy barrier in unit time; the units of the frequency factor (A) are identical to those of the rate constant (k) and will vary depending on the order of the reaction; if the reaction is a first order reaction, the units will be s⁻¹; this is why answer C may be chosen by mistake;
- **9.** A;

$$\begin{array}{ll} \textit{step 1} & O_3(g) \rightleftharpoons O_2(g) + \Theta(g) & \textit{fast} \\ \\ \textit{step 2} & \Theta(g) + O_3(g) \rightarrow 2O_2(g) & \textit{slow} \\ \\ \textit{overall} & 2O_3(g) \rightleftharpoons 3O_2(g) \end{array}$$

In this mechanism, the reaction intermediate if the oxygen atom (O) as it is produced and the consumed in a subsequent step; as its presence in the slow step is dependent on the fast step, the reactant of the fast step must be included in the rate expression; therefore, the rate expression for this mechanism is rate = $k[O_3]^2$ and not as stated in statement III;

10. a)
$$\frac{rate\ 1}{rate\ 2} = \frac{(0.0150)^a}{(0.0150)^a} \frac{(0.0150)^b}{(0.0300)^b} = \frac{2.32 \times 10^{-3}}{4.64 \times 10^{-3}} = (0.500)^b = 0.50, \text{ so } b = 1$$
$$\frac{rate\ 1}{rate\ 3} = \frac{(0.0150)^a}{(0.0300)^a} \frac{(0.0150)^b}{(0.0150)^b} = \frac{2.32 \times 10^{-3}}{4.64 \times 10^{-3}} = (0.500)^a = 0.5, \text{ so } a = 1$$

the reaction is first order with respect to A and B; the overall reaction order is second order;

b) rate =
$$k[A][B]$$

c)
$$k = \frac{\text{rate}}{[A][B]}$$

$$K = \frac{4.64 \times 10^{-3} \ mol \ dm^{-3} s^{-1}}{1.50 \times 10^{-2} \ mol \ dm^{-3} \times 3.00 \times 10^{-2} \ mol \ dm^{-3}} = 1.03 \times 10^{1} \ mol^{-1} dm^{3} s^{-1}$$

d) rate =
$$k[A][B]$$

= $(1.03 \times 10^{1} \ mol^{-1} \ dm^{3}s^{-1}) \times (2.00 \times 10^{-2} \ mol \ dm^{-3} \times (4.00 \times 10^{-2} \ mol \ dm^{-3})$
= $8.25 \times 10^{-3} \ mol \ dm^{-3}s^{-1}$

11. a)
$$E_a = \frac{\ln \frac{6.30 \times 10^3}{2.25 \times 10^5} \times 8.31}{\frac{1}{356} - \frac{1}{305}} = \frac{-29.7}{-4.70 \times 10^{-4}} = 6.33 \times 10^4 \ J \ mol^{-1}$$

b)
$$6.33 \times 10^4 = \frac{ln \frac{k_3}{6.30 \times 10^3} \times 8.31}{\frac{1}{305} - \frac{1}{293}}$$

In the above expression, use the value of k_2 and the temperature for k_1 ; the combination should be either k_1 and k_2 ; and k_3 and k_4 ; the combination

should be either
$$k_1$$
 and T_1 , or k_2 and T_2 ;
$$\ln \frac{k_3}{6.30 \times 10^3} = -1.02286$$

$$\ln k_3 = -1.02286 + \ln(6.30 \times 10^3) = 7.72544$$

$$k_3 = 2.27 \times 10^3 \text{ s}^{-1}$$

There is an alternative method; retain a large number of significant figures in the intermediate values:

$$\ln k_1 = \ln A - \frac{E_a}{RT_1}$$

$$\ln k_1 = \ln k_1 + \frac{E_a}{RT_1} = \ln(6.30 \times 10^3) + \frac{63300}{8.31 \times 305} = 33.7231$$

$$\ln k_3 = \ln k_1 - \frac{E_a}{RT_3} = 33.7231 - \frac{63300}{8.31 \times 293} = 7.7254$$

$$k_3 = 2.27 \times 10^3 \,\text{s}^{-1}$$