Self-test Questions

Topic 6 (SL)

- **1** Which of the following factors will **not** increase the rate of the reaction between calcium carbonate and excess dilute hydrochloric acid?
 - $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$
 - **A** increasing the concentration of the HCl(aq)
 - **B** increasing the temperature
 - ${\bf C}~$ increasing the surface area of the CaCO_3(s)
 - **D** increasing the volume of HCl(aq)
- 2 In which region of this graph is the rate of reaction fastest?

- **D** IV
- **3** Which of the following is the main reason that increasing the temperature increases the rate of a reaction?
 - **A** The activation energy increases.
 - **B** More particles have energy greater than the activation energy.
 - C The particles collide more.
 - **D** The collision frequency increases.
- **4** Which line on the graph shows the Maxwell–Boltzmann distribution at the lowest temperature?

- 5 Which of the following best describes how a catalyst works?
 - A It causes an increase in the collision frequency.
 - **B** It provides a surface on which the reaction can occur.
 - C It provides an alternative pathway of lower activation energy.
 - **D** It allows molecules to collide in the correct orientation.
- 6 Which of the following is likely to cause the greatest increase in the rate of reaction?
 - **A** Increasing the temperature from $50 \,^{\circ}$ C to $100 \,^{\circ}$ C.
 - **B** Doubling the concentration of one of the reactants.
 - C Doubling the temperature from 200 K to 400 K.
 - **D** Doubling the surface area of a solid reactant.
- 7 Which of the following is true?
 - A A catalyst is not used up in a chemical reaction.
 - **B** All collisions with $E > E_z$ result in reaction.
 - **C** E_a for an endothermic reaction is higher than that for an exothermic one.
 - **D** The rate of all reactions doubles as the temperature is increased by 10 K.
- 8 Sodium hydrogencarbonate reacts with dilute hydrochloric acid:

 $2NaHCO_3(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + 2H_2O(l) + 2CO_2(g)$

If 80 cm³ of carbon dioxide were collected in 60 s, what was the average rate of reaction? A $0.75 \text{ cm}^{-3} \text{ s}^{-1}$

- **B** $2.7 \text{ cm}^{-3} \text{ s}^{-1}$
- **C** $1.3 \text{ cm}^{-3} \text{ s}^{-1}$
- **D** $0.75 \text{ cm}^{-3}\text{ cm}^{-3}$
- **D** 0.75 cm⁻³ s⁻¹
- **9** On the graph below, the line marked X is for the reaction of 1.0 g powdered CaCO₃ with 25 cm³ of 1.0 mol dm⁻³ HCl at 20 °C. Which line(s) could represent the reaction of 1.0 g powdered CaCO₃ with 25 cm³ of 1.0 mol dm⁻³ HCl at 30 °C?

- A III and IV only
- **B** II only
- C II and III only
- $\boldsymbol{D} \ \ I \ only$

10 On the graph below, the line marked X is for the reaction of 1.0 g powdered $CaCO_3$ with 25 cm³ of 1.0 mol dm⁻³ HCl at 20 °C. Which line(s) could represent the reaction of 1.0 g powdered $CaCO_3$ with a higher concentration of HCl at the same temperature?

- C III and IV only
- $D \ \ I \ only$