

1. Match each of the reactions to the correct description;

(2 marks)

W	/ood burning	Heating hydrate CuSO ₄ .5H ₂ O		Making an CH₃COOI CH₃COO	ester; H(aq) + CH₃OH(aq) <i>⇔</i> CH₃(aq) + H₂O(aq)	
[A reversible reaction at	equilibrium	A reversible	e reaction	An irreversible re	action
Exp	plain your choice;					
						(2 marks)
We valu For	can define a constant, K ue of K_c is constant.	$c_{\rm c}$ for a reaction at low, write an expr	equilibrium. ession for the	Provided the te	emperature is constant, $\kappa_{ m c}$ and derive the u	ant, the units of the
con	istant.					
(a)	Electrophilic addition of $K_c =$	HCN to propanor	ne; CH₃COC Uni	:H₃(aq) + HCN ts =	(aq)	N)CH₃(aq) (2 marks)
(b) Esterification; $CH_3CH_2COOH(aq) + CH_3OH(aq) \Rightarrow CH_3CH_2COOCH_3(aq) + H_2O(aq)$						
	K _c =		Uni	ts =		(2 marks)
(C)	The Haber Process; N_2	<u>e(g)</u> + 3 H₂(g) ≓	2 NH ₃ (g)			
	K _c =		Uni	ts =		(2 marks)

2.

2.1. The equilibrium constant, $K_{\rm c}$

(2 marks for all three correct, 1 mark for 1 correct)

The products from burning wood cannot be turned back into wood so it is irreversible. The copper sulphate once dehydrated can be turned back into the hydrated form by the addition of water. Hence it is a reversible reaction (1 mark for above two points). The esterification reaction is in a closed system so neither products nor reactants can escape so it is a reaction at equilibrium (1 mark).

2. (a)
$$K_{c} = \frac{[CH_{3}C(OH)(CN)CH_{3}(aq)]}{[CH_{3}COCH_{3}(aq)][HCN(aq)]}$$

(b) $K_{c} = \frac{[CH_{3}CH_{2}COOCH_{3}(aq)][H_{2}O(aq)]}{[CH_{3}CH_{2}COOCH_{3}(aq)][CH_{3}OH(aq)]}$
(c) $K_{c} = \frac{[NH_{3}(g)]^{2}}{[N_{2}(g)][H_{2}(g)]^{3}}$
Units = $\frac{mol-dm^{-3}}{mol-dm^{-3}} \times mol-dm^{-3}$
Units = $\frac{mol-dm^{-3}}{mol-dm^{-3}} = \frac{mol-1}{(mol-dm^{-3})^{2}}$
Units = $\frac{(mol-dm^{-3})^{2}}{(mol-dm^{-3})^{3}} = \frac{mol^{-2}dm^{6}}{(2marks)}$

2.2. Calculations with $K_{\rm c}$

1. (a)
$$K_c = \frac{[SO_3]^2}{[SO_2]^2 [O_2]}$$
 (1 mark) = $\frac{(1.4 \text{ mol } dm^{-3})^2}{(1 \text{ mol } dm^{-3})^2 (0.2 \text{ mol } dm^{-3})}$ = $\frac{9.8 \text{ mol}^{-1} \text{ dm}^3}{(1 \text{ mark for value, 1 mark for units})}$

(b) The temperature has been decreased. Therefore the equilibrium will shift in favour of the exothermic reaction (to the right) in order to oppose the temperature decrease. Therefore <u>the value of K_c will increase</u>. (1 mark)

