

For gases it is easier to measure the pressure of a gas instead of its concentration. Therefore for equilibria involving only gases we quote the equilibrium constant in terms of pressure and give it the symbol K_{p} .

Complete the table below by calculating the equilibrium composition, the mole fractions, the total pressure or the partial pressures for the equilibria shown. (4 marks)

Equilibrium	$2 H_2(g) + O_2(g) \rightleftharpoons 2 H_2O(g)$	$2 \text{ NO}_2(g) \rightleftharpoons \text{N}_2\text{O}_4(g)$	$PCl_5 \rightleftharpoons PCl_3 + Cl_2$
Composition of equilibrium mixture	1 mol H ₂ 5 mol O ₂ 4 mol H ₂ O		% PCl₅ % PCl₃ % Cl₂
Mole fractions	$H_2 = 0.1$ $O_2 = 0.5$ $H_2O = 0.4$	NO ₂ = N ₂ O ₄ =	$PCI_5 = 0.1$ $PCI_3 = 0.55$ $CI_2 = 0.35$
Total pressure	20 kPa	100 atm	
Partial pressures	$H_2 =O_2 =H_2O =$	NO ₂ = 37.5 atm N ₂ O ₄ = 62.5 atm	PCl ₅ = 4,600 Pa PCl ₃ = 25,300 Pa Cl ₂ = 16,100 Pa
Expression for <i>K</i> _p	<i>К</i> _р =	K _p =	<i>K</i> _ρ =
Value of <i>K</i> _p	<i>K</i> _p =	K _p =	K _p =

2. Write an expression for K_p , and calculate its value, assuming that each of the systems described above is at equilibrium. (6 marks)

3.	Increasing the pressure of the system	no change	2 nd floor
4.	Increasing the reaction temperature	increases	3 rd floor
5.	Adding CO to the reaction mixture	no change	3 rd floor
6.	Decreasing the reaction temperature	decreases	2 nd floor
7.	Increasing the volume of the reaction container	no change	2 nd floor
8.	Increasing the amount of H_2 gas in the reaction mixture	no change	2 nd floor
9.	Increasing the surface area of the catalyst	no change	2 nd floor

(9 marks)

Le Châtelier can find his glasses on the 2^{nd} floor they were in his office all along! (1 mark)

2.4. The equilibrium constant, $K_{\rm p}$

1.	4 marks – one for ea	ch box fully completed correctly
••		

Equilibrium	$2 H_2(g) + O_2(g) \rightleftharpoons 2 H_2O(g)$	$2 \text{ NO}_2(g) \rightleftharpoons N_2O_4(g)$	$PCI_5 \rightleftharpoons PCI_3 + CI_2$
Composition of equilibrium mixture	1 mol H ₂ 5 mol O ₂ 4 mol H ₂ O		<u>10%</u> PCI₅ <u>55%</u> PCI₃ <u>35%</u> CI₂
Mole fractions	$H_2 = 0.1$ $O_2 = 0.5$ $H_2O = 0.4$	$NO_2 = \frac{3}{8} \text{ or } 0.375$ $N_2O_4 = \frac{5}{8} \text{ or } 0.625$	$PCI_5 = 0.1$ $PCI_3 = 0.55$ $CI_2 = 0.35$
Total pressure	20 kPa	100 atm	<u>46,000 Pa</u>
Partial pressures	$H_2 = 2 kPa$ $O_2 = 10 kPa$ $H_2O = 8 kPa$	NO ₂ = 37.5 atm N ₂ O ₄ = 62.5 atm	PCl ₅ = 4,600 Pa PCl ₃ = 25,300 Pa Cl ₂ = 16,100 Pa
Expression for <i>K</i> _p	$K_{\rm p} = \frac{(P_{\rm H_2O})^2}{(P_{\rm H_2})^2 (P_{\rm O_2})}$	$K_{p} = (P_{N_{2}O_{4}}) / (P_{NO_{2}})^{2}$	$K_{p} = \frac{(P_{PCl_{3}})(P_{Cl_{2}})}{(P_{PCl_{5}})}$
Value of <i>K</i> _p	$K_{\rm p} = 8^2 / (2^2 \times 10)$ $K_{\rm p} = 1.6 \rm kPa^{-1}$	$K_{\rm p} = 62.5 / 37.5^2$ $\underline{K_{\rm p}} = 0.0444 \text{ atm}^{-1}$	$K_{p} = (\underline{25,300 \times 16,100})$ 4,600 $\underline{K_{p}} = 88,550 \text{ Pa}$

(6 marks, 1 for each correct expression for K_p and 1 for each correct value for K_p with correct units)

