

Le Châtelier has lost his glasses. He can't remember which floor of his lab he left them on!

Consider the equilibrium below;

 $H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g) \quad \Delta H = +40 \text{ kJ mol}^{-1}$

Help Le Châtelier find his glasses by deciding what effect each of the changes in conditions 1-9 listed below will have on the value of K_c for this equilibrium.

Le Châtelier is currently in his office on the second floor

- If the change in conditions increase K_c, move Le Châtelier one floor up
- If the change in conditions decrease K_c, move Le Châtelier one floor down
- If the change in conditions have no effect on K_c, Le Châtelier doesn't move

Unless stated otherwise assume that all conditions other than the one mentioned remain constant.

2. Equilibria answers

	ethyl butanoate	+ water	⇒ butanoic ad	cid + ethanol	
Initial	1 mol	2 mol	0 mol	0 mol	
Change	–0.3 mol	–0.3 mol	+0.3 mo	l +0.3 mol	
Equilibrium	0.7 mol	1.7 mol	0.3 mol	0.3 mol	(1 mark)
K _c = [acid][alcohol]	= [0.3 mol / V] [0	.3 mol / V] =	<u>0.076 no units</u>		
[ester] [water]	[0.7 mol / V] [1	.7 mol / V]	(1 mar	k for value, 1 mar	k for units)
No. of moles in 50 cm ³	of water;				
Mass = 50 cm ³ × 1 g cm	n ⁻³ = 50 g				
Moles = 50 g / 18 g mol	⁻¹ = 2.78 mol				(1 mark)
Substituting into the equ	uilibrium;				
buta	nol + ethanoi	c acid	ester	+ water	
Initial x	mol 0.5 n	nol	0 mol	2.78 mol	
Change –0.2	5 mol –0.25	mol	+0.25 mol	+0.25 mol	
E quilibrium (x – 0.	25) mol 0.25 i	mol	0.25 mol	3.03 mol	
$K_{\rm c}$ = [ester][wat	er] = [0	.25 mol / V] [3	.03 mol / V]		(1 mark)
[butanol] [ethanoic acid] $[(x - 0.25 \text{ mol}) / V] [0.25 \text{ mol} / V]$ Knowing that $K_c = 3.0$ under the reaction conditions; 3.0 = [0.25 mol / V] [3.03 mol / V] = 0.7575					
[(x – 0.25 mol)	/ V] [0.25 mol / V]	0.25x –	0.0625		
3.0 (0.25x - 0.0625) =	0.7575				
0.75x - 0.1875 = 0.757	75				
0.75x = 0.945					
<u>x = 1.26 mol</u>					(1 mark)
	Initial Change Equilibrium $K_c = [acid][alcohol]$ [ester] [water] No. of moles in 50 cm ³ of Mass = 50 cm ³ × 1 g cm Moles = 50 g / 18 g mol Substituting into the equ butar Initial x f Change -0.2 Equilibrium (x - 0.2) $K_c = [ester][water]$ $K_c = [ester][water]$ (x - 0.25 mol/) (x - 0.25 mol/) 3.0 (0.25x - 0.0625) = 0.75x - 0.1875 = 0.757 0.75x = 0.945 x = 1.26 mol	ethyl butanoateInitial1 molChange $-0.3 mol$ Equilibrium $0.7 mol$ K_c = $[acid][alcohol] = [0.3 mol / V][0.7 mol / V][1.7]No. of moles in 50 cm³ of water;Mass = 50 cm³ × 1 g cm⁻³ = 50 gMoles = 50 g / 18 g mol⁻¹ = 2.78 molSubstituting into the equilibrium;butanol +ethanoicInitialx mol0.5 mChange-0.25 mol-0.25 molEquilibrium(x - 0.25) mol0.25 molK_c=[ester][water]=[butanol][ethanoic acid][(x - 0.25 mol / V]]3.0(0.25x - 0.0625) = 0.75750.75x - 0.1875 = 0.75750.75x = 0.945x = 1.26 mol$	ethyl butanoate + water Initial 1 mol 2 mol Change -0.3 mol -0.3 mol Equilibrium 0.7 mol 1.7 mol $K_c = [acid] [alcohol] = [0.3 mol / V] [0.3 mol / V] =$ [ester] [water] $(0.7 mol / V] [1.7 mol / V] =$ No. of moles in 50 cm ³ of water; Mass = 50 cm ³ × 1 g cm ⁻³ = 50 g Moles = 50 g / 18 g mol ⁻¹ = 2.78 mol Substituting into the equilibrium; butanol + ethanoic acid \Rightarrow Initial x mol 0.5 mol Change -0.25 mol -0.25 mol Equilibrium (x - 0.25) mol 0.25 mol $K_c = [ester] [water] = [0.25 mol / V] [3]$ [butanol] [ethanoic acid] $((x - 0.25 mol) / V]$ Knowing that $K_c = 3.0$ under the reaction conditions; 3.0 = [0.25 mol / V] [3.03 mol / V] = 0.75 (x - 0.25 mol) / V] [0.25 mol / V] = 0.7575 0.75x - 0.1875 = 0.7575 0.75x = 0.945 x = 1.26 mol	ethyl butanoate + water \Rightarrow butanoic ac Initial 1 mol 2 mol 0 mol Change -0.3 mol -0.3 mol +0.3 mol Equilibrium 0.7 mol 1.7 mol 0.3 mol $K_c = [acid] [alcohol] = [0.3 mol / V] [0.3 mol / V] = 0.076 no units$ [0.7 mol / V] [1.7 mol / V] = 0.076 no units No. of moles in 50 cm ³ of water; Mass = 50 cm ³ × 1 g cm ⁻³ = 50 g Moles = 50 g / 18 g mol ⁻¹ = 2.78 mol Substituting into the equilibrium; butanol + ethanoic acid \Rightarrow ester Initial x mol 0.5 mol 0 mol Change -0.25 mol -0.25 mol +0.25 mol Equilibrium (x - 0.25) mol 0.25 mol 0.25 mol $K_c = [ester] [water] = [0.25 mol / V] [3.03 mol / V]$ [butanol] [ethanoic acid] = $(x - 0.25 mol / V] [0.25 mol / V]$ Knowing that $K_c = 3.0$ under the reaction conditions; 3.0 = [0.25 mol / V] [3.03 mol / V] = 0.7575 [(x - 0.25 mol / V] [0.25 mol / V] = 0.25x - 0.0625 3.0 (0.25x - 0.0625) = 0.7575 0.75x - 0.1875 = 0.7575 0.75x = 0.945 x = 1.26 mol	ethyl butanoate + water \rightleftharpoons butanoic acid + ethanol Initial 1 mol 2 mol 0 mol 0 mol Change -0.3 mol -0.3 mol +0.3 mol +0.3 mol +0.3 mol Equilibrium 0.7 mol 1.7 mol 0.3 mol 0.3 mol 0.3 mol $K_c = [acid][alcohol] = [0.3 mol / V] [0.3 mol / V] = 0.076 no units$ [ester] [water] $[0.7 mol / V] [1.7 mol / V] = 0.076 no units$ [ester] [water] $[0.7 mol / V] [1.7 mol / V] = 0.076 no units$ Moles = 50 g / 18 g mol ⁻¹ = 2.78 mol Substituting into the equilibrium; butanol + ethanoic acid \rightleftharpoons ester + water Initial x mol 0.5 mol 0 mol 2.78 mol Change -0.25 mol -0.25 mol +0.25 mol +0.25 mol Equilibrium (x - 0.25) mol 0.25 mol 0.25 mol 3.03 mol $K_c = [ester][water] = [0.25 mol / V] [3.03 mol / V] [1.7 mol / V]$ Knowing that $K_c = 3.0$ under the reaction conditions; 3.0 = [0.25 mol / V] [3.03 mol / V] = 0.7575 [(x - 0.25 mol / V] [3.03 mol / V] = 0.25x - 0.0625 3.0 (0.25x - 0.0625) = 0.7575 0.75x = 0.945 x = 1.26 mol

2.3 Le Châtelier and K_c

		Effect on K _c	Location of Le Châtelier
1.	Adding a catalyst to the reaction mixture	no change	2 nd floor
2.	Adding CO ₂ to the reaction mixture	no change	2 nd floor

3.	Increasing the pressure of the system	no change	2 nd floor
4.	Increasing the reaction temperature	increases	3 rd floor
5.	Adding CO to the reaction mixture	no change	3 rd floor
6.	Decreasing the reaction temperature	decreases	2 nd floor
7.	Increasing the volume of the reaction container	no change	2 nd floor
8.	Increasing the amount of H_2 gas in the reaction mixture	no change	2 nd floor
9.	Increasing the surface area of the catalyst	no change	2 nd floor

(9 marks)

Le Châtelier can find his glasses on the 2^{nd} floor they were in his office all along! (1 mark)

2.4. The equilibrium constant, $K_{\rm p}$

1.	4 marks – one for ea	ch box fully completed correctly
••		

Equilibrium	$2 H_2(g) + O_2(g) \rightleftharpoons 2 H_2O(g)$	$2 \text{ NO}_2(g) \rightleftharpoons N_2O_4(g)$	$PCI_5 \rightleftharpoons PCI_3 + CI_2$
Composition of equilibrium mixture	1 mol H ₂ 5 mol O ₂ 4 mol H ₂ O		<u>10%</u> PCI₅ <u>55%</u> PCI₃ <u>35%</u> CI₂
Mole fractions	$H_2 = 0.1$ $O_2 = 0.5$ $H_2O = 0.4$	$NO_2 = \frac{3}{8} \text{ or } 0.375$ $N_2O_4 = \frac{5}{8} \text{ or } 0.625$	$PCI_5 = 0.1$ $PCI_3 = 0.55$ $CI_2 = 0.35$
Total pressure	20 kPa	100 atm	<u>46,000 Pa</u>
Partial pressures	$H_2 = 2 kPa$ $O_2 = 10 kPa$ $H_2O = 8 kPa$	NO ₂ = 37.5 atm N ₂ O ₄ = 62.5 atm	PCl ₅ = 4,600 Pa PCl ₃ = 25,300 Pa Cl ₂ = 16,100 Pa
Expression for <i>K</i> _p	$K_{\rm p} = \frac{(P_{\rm H_2O})^2}{(P_{\rm H_2})^2 (P_{\rm O_2})}$	$K_{p} = (P_{N_{2}O_{4}}) / (P_{NO_{2}})^{2}$	$K_{p} = \frac{(P_{PCl_{3}})(P_{Cl_{2}})}{(P_{PCl_{5}})}$
Value of <i>K</i> _p	$K_{\rm p} = 8^2 / (2^2 \times 10)$ $K_{\rm p} = 1.6 \rm kPa^{-1}$	$K_{\rm p} = 62.5 / 37.5^2$ $\underline{K_{\rm p}} = 0.0444 \text{ atm}^{-1}$	$K_{p} = (\underline{25,300 \times 16,100})$ 4,600 $\underline{K_{p}} = 88,550 \text{ Pa}$

(6 marks, 1 for each correct expression for K_p and 1 for each correct value for K_p with correct units)

