Nitrogen reacts with hydrogen as shown:

 $3H_2(g) + N_2(g) \approx 2NH_3(g)$ $\Delta H = -76 \text{ kJ mol}^{-1}$

10 an	0.0 moles of hydrogen was mixed with 5.0 moles of nitrogen. At equilibrium, there was found to be 3.0 moles of nmonia. The total pressure was $2.0 \times 10^7 \text{Pa}$.
а	Write an expression for K_p for this equilibrium.
b	State the units of K _p .
С	Calculate the moles of hydrogen and nitrogen at equilibrium.
	hydrogen = nitrogen =
d	Calculate the partial pressure of each gas.
	hydrogen = nitrogen = ammonia =
е	Calculate K _p for this equilibrium.
f	Explain what would happen to the position of the equilibrium and the value of K _p if the total pressure of gases was decreased?
g	Explain what would happen to the position of the equilibrium and the value of K_p if the temperature of gases was decreased?

© www.CHEMSHEETS.co.uk 3-Mar-2018 Chemsheets A2 1156