

 $\Delta H = +206 \text{ kJ mol}^{-1}$

Ну	vdrogen can be made as shown: $CH_4(g) + H_2O(g) \Rightarrow 3H_2(g) + CO(g)$ $\Delta H = +206 \text{ kJ mol}^{-1}$
	0 moles of methane was mixed with 5.0 moles of steam. At equilibrium, there was found to be 6.0 moles of drogen. The total pressure was 1500 kPa.
а	Write an expression for K _p for this equilibrium.
b	State the units of K _p .
С	Calculate the moles of each gas at equilibrium.
	hydrogen = carbon monoxide = methane = steam =
d	Calculate the partial pressure of each gas.
	hydrogen = carbon monoxide = methane = steam =
е	Calculate K_p for this equilibrium.
f	Explain what would happen to the position of the equilibrium and the value of K_p if the temperature of gases was increased?
g	Explain what would happen to the position of the equilibrium and the value of K_p if the total pressure of gases was increased?
h	Calculate K_p and state the units for this equilibrium at the same temperature and pressure as the original mixture at the start of the question
	mixture at the start of the question. $3H_2(g) + CO(g) \ \rightleftharpoons \ CH_4(g) + H_2O(g)$

© www.CHEMSHEETS.co.uk 16-Mar-2018 Chemsheets A2 1157