1 Calculate the moles at equilibrium in each of the following.

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Initial Moles</th>
<th>Change in Moles</th>
<th>Equilibrium Moles</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{N}_2 + 3\text{H}_2 \rightleftharpoons 2\text{NH}_3)</td>
<td>(1.0) (2.0) (0)</td>
<td>(-0.3) (-0.9) (+0.6)</td>
<td>(0.7) (1.1) (0.6)</td>
</tr>
<tr>
<td>(2\text{SO}_2 + \text{O}_2 \rightleftharpoons 2\text{SO}_3)</td>
<td>(5.0) (2.0) (0)</td>
<td>(-1.2) (-0.6) (+1.2)</td>
<td>(3.8) (1.4) (1.2)</td>
</tr>
<tr>
<td>(\text{H}_2 + \text{I}_2 \rightleftharpoons 2\text{HI})</td>
<td>(3.0) (4.0) (0)</td>
<td>(-1.4) (-1.4) (+2.8)</td>
<td>(1.6) (2.6) (2.8)</td>
</tr>
<tr>
<td>(2\text{PCl}_5 \rightleftharpoons \text{PCl}_3 + \text{Cl}_2)</td>
<td>(2.0) (0) (1.0)</td>
<td>(-0.4) (+0.4) (+0.4)</td>
<td>(1.6) (0.4) (1.4)</td>
</tr>
</tbody>
</table>

2 A and B react to form C and D in an equilibrium in a closed system. At temperature \(T \), the equilibrium constant \(K_c \) has a value of 4.72. The forward reaction is exothermic.

\[
\text{A}(g) + \text{B}(g) \rightleftharpoons \text{C}(g) + \text{D}(g) \quad \Delta H = -57 \text{ kJ mol}^{-1}
\]

a What would happen to the yield of C and \(K_c \) if the pressure was increased. Explain your answer.

- equilibrium position does not move as there are same number of gas particles on each side
- no effect on yield of C
- no change in \(K_c \)

b What would happen to the yield of C and \(K_c \) if the temperature was increased. Explain your answer.

- equilibrium position moves left in endothermic direction to oppose increase in temperature
- decreases yield of C
- \(K_c \) decreases

c 2.0 moles of A and 2.0 moles of B were placed in a flask at temperature \(T \). Calculate the number of moles of C in the equilibrium mixture.

\[
\begin{align*}
\text{moles at start} & \quad \text{2.0} \quad \text{2.0} \quad \text{0} \quad \text{0} \\
\text{change in moles} & \quad -x \quad -x \quad x \quad x \\
\text{moles at equilibrium} & \quad 2-x \quad 2-x \quad x \quad x
\end{align*}
\]

\[
K_c = \frac{[\text{C}][\text{D}]}{[\text{A}][\text{B}]} = \frac{(\frac{x}{V})^2}{(\frac{2-x}{V})^2} = 4.72
\]

square rooting both sides and cancelling \(V \):

\[
\frac{x}{2-x} = 2.17
\]

\[
x = 2.17(2-x)
\]

\[
x = 4.34 - 2.17x
\]

\[
3.17x = 4.34 \quad x = 1.37
\]