

Sulfur dioxide reacts with oxygen to form sulphur trioxide in a reaction that reaches a dynamic equilibrium in a closed system. The forward reaction is exothermic.

$2SO_2(g) + O_2(g)$	≓	2SO ₃ (g)
sulfur		sulfur
dioxide		trioxide

1 What happens to the equilibrium yield of sulphur trioxide (SO₃) if the temperature is increased? Explain your answer.

equilibrium position moves left in endothermic direction to lower the temperature less SO₃ formed

2 What happens to the equilibrium yield of sulphur trioxide (SO₃) if the pressure is increased? Explain your answer.

equilibrium position moves right to side with fewer gas molecules to lower the pressure more SO₃ formed

3 What happens to the equilibrium yield of sulphur trioxide (SO₃) if more oxygen (O₂) is added? Explain your answer.

equilibrium position moves right to remove the added O₂ more SO₃ formed

4 What happens to the equilibrium yield of sulphur trioxide (SO₃) if a catalyst is used? Explain your answer.

catalyst speeds up both reactions by the same amount equilibrium position does not move no change to amount of SO₃ formed