Questions

1 Consider the following equilibrium reaction.

 $Cl_2(g) + SO_2(g) \rightleftharpoons SO_2Cl_2(g)$ $\Delta H^{\oplus} = -84.5 \text{ kJ}$

In a 1.00 dm³ closed container, at 375 °C, 8.60×10^{-3} mol of SO $_2$ and 8.60×10^{-3} mol of Cl $_2$ were introduced. At equilibrium, 7.65×10^{-4} mol of SO $_2$ Cl $_2$ was formed.

- a) Deduce the equilibrium constant expression K_c for the reaction.
- b) Determine the value of the equilibrium constant K_a .
- c) If the temperature of the reaction is changed to 300 °C, predict, stating a reason in each case, whether the equilibrium concentration of SO₂Cl₂ and the value of *K_c* will increase or decrease. [3]
- d) If the volume of the container is changed to 1.50 dm³, predict, stating a reason in each case, how this will affect the equilibrium concentration of SO_2Cl_2 and the value of K_c . [3]
- e) Suggest, stating a reason, how the addition of a catalyst at constant pressure and temperature will affect the equilibrium concentration of SO₂Cl₂. [2]

IB, November 2009

When a mixture of 0.100 mol NO, 0.051 mol H₂ and 0.100 mol H₂O were placed in a 1.0 dm³ flask at 300 K, the following equilibrium was established.

$$2\mathrm{NO}(g)\,+\,2\mathrm{H}_{_{2}}(g)\, \rightleftharpoons\, \mathrm{N}_{_{2}}(g)\,+\,\mathrm{H}_{_{2}}\mathrm{O}(g)$$

At equilibrium, the concentration of NO was found to be 0.062 mol dm⁻³. Determine the equilibrium constant, K_c , of the reaction at this temperature.

IB, May 2009

3. 0.50 mol of $I_2(g)$ and 0.50 mol of $Br_2(g)$ are placed in a closed flask. The following equilibrium is established.

$$I_2(g) + Br_2(g) \rightleftharpoons IBr(g)$$

The equilibrium mixture contains 0.80 mol of IBr(g). What is the value of K_c ?

- A. 0.64
- B. 1.3
- C. 2.6

[1]

[3]

- D. 64 [1]
- IB, May 2010
- **4.** a) The production of ammonia is an important industrial process.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

- i) Using the average bond enthalpy values in Table 10 of the *Data Booklet*, determine the standard enthalpy change for this reaction. [3]
- ii) The standard entropy values, S, at 298 K for $N_2(g)$, $H_2(g)$ and $NH_3(g)$ are 193, 131 and 192 JK⁻¹ mol⁻¹ respectively. Calculate ΔS° for the reaction and with reference to the equation above, explain the sign of ΔS° . [4]
- iii) Calculate ΔG° for the reaction at 298 K. [1]
- iv) Describe and explain the effectof increasing temperature on thespontaneity of the reaction. [2]
- b) The reaction used in the production of ammonia is an equilibrium reaction.

 Outline the characteristics of a system at equilibrium.

 [2]
- c) Deduce the equilibrium constant expression, K_x , for the production of ammonia. [1]
- d) i) 0.20 mol of $N_2(g)$ and 0.20 mol of $H_2(g)$ were allowed to reach equilibrium in a 1 dm³ closed container. At equilibrium the concentration of $NH_3(g)$ was 0.060 mol dm $^{-3}$. Determine the equilibrium concentrations of $N_2(g)$ and $H_2(g)$ and calculate the value of K_c . [3]
 - ii) Predict and explain how increasing the temperature will affect the value of K_c . [2]

IB, May 2010

Topic 17 – Equilibrium (AHL)

End of topic questions (page 394)

1. a)
$$K_c = \frac{[SO_2 Cl_2]}{[Cl2][SO2]}$$

- **b)** 12.5;
- **c)** value of K_c increases; [SO₂Cl₂] increases; decrease in temperature favours (forward) reaction which is exothermic;
- **d)** no effect on the value of K_c, as it depends only on temperature; [SO₂Cl₂] decreases; increase in volume favours the reverse reaction which has more gaseous moles;
- **e)** no effect; catalyst increases the rate of forward and reverse reactions (equally)/catalyst decreases activation energies (equally);
- **2.** 2NO (g) + 2H₂ (g) \leftrightarrow N₂ (g) + 2H₂ O(g)

	NO (g)	H ₂ (g)	N ₂ (g)	H ₂ 0 (g)
Initial (mol dm ⁻³)	0.100	0.051	0.000	0.100
Change (mol dm ⁻³)	-0.038	-0.038	+0.019	+0.038
Equilibrium (mol dm ⁻³)	0.062	0.013	0.019	0.138

[H₂] at equilibrium = $0.013 \text{ mol dm}^{-3}$

 $[N_2]$ at equilibrium = 0.019 mol dm⁻³

 $[\mathrm{H_2O}]$ at equilibrium = 0.138 mol dm⁻³

$$K_{C} = \frac{[N_{2}][H_{2}O]^{2}}{[NO]^{2}[H_{2}]^{2}} = \frac{(0.019)(0.138)^{2}}{(0.062)^{2}(0.013)^{2}} = 5.6 \times 10^{2}$$