

A buffer solution is a solution that resists a change in pH when a small quantity of acid or base is added.

1. (a) A buffer solution is made by mixing 0.510 mol of methanoic acid with 0.450 mol of sodium methanoate in 500 cm³ of water. Write an equation to represent the equilibrium established in the buffer solution. (i)(1 mark) (ii) Calculate the pH of the buffer solution formed. (pK_a for methanoic acid = 3.75)(3 marks) (b) Explain how this buffer resists change in pH on; addition of a small quantity of acid. (i)(1 mark) (ii) addition of a small quantity of base.(1 mark) Mark and Karen are carrying out a science project on the application of buffer solutions in the human 2. body. They have discovered that a buffer of carbonic acid (H_2CO_3) and hydrogen carbonate (HCO_3^-) is present in blood plasma to maintain a pH of between 7.35 and 7.45. (a) They would like to recreate a similar buffer solution in the laboratory. In what proportions should they mix 0.150 mol dm⁻³ solutions of carbonic acid and sodium hydrogen carbonate to give a buffer solution with a pH of 7.40? (K_a for H₂CO₃ is 4.5×10^{-7} mol dm⁻³).

(2 marks) (b) Why do you think buffer solutions are needed in the human body?

3.5. Buffer solutions

1. (a) (i) HCOOH(aq) = HCOO⁻(aq) + H⁺(aq) (1 mark)
(ii)
$$pK_a = -\log K_a$$
, $K_{ab} = 10^{-375} = 1.78 \times 10^{-4} \text{ mol dm}^{-3}$ (1 mark)
 $K_a = [HCOO^-(aq)][H^+(aq)]$
 $[HCOOH(aq)] = 0.450 \text{ mol } / 0.5 \text{ dm}^3 = 0.90 \text{ mol dm}^{-3}$
 $[HCOOH(aq)] = 0.510 \text{ mol } / 0.5 \text{ dm}^3 = 1.02 \text{ mol dm}^{-3} = 0.90 \times [H^+(aq)] / 1.02$
 $\therefore [H^+(aq)] = 2.02 \times 10^{-4} \text{ mol dm}^{-3}$ (1 mark)
 $\therefore pH = 3.70$ (1 mark)
 $\therefore pH = 3.70$ (1 mark)
(b) (i) On the addition of H⁺ ions, according to Le Châtelier's principle, the equilibrium shifts to the
left to remove the extra H⁺ ions added and maintain the pH approximately constant. (1 mark)
(ii) On the addition of OH⁻ ions, the OH⁻ ions react with the HCOOH to produce water molecules
and more HCOO⁻;
HCOOH + OH⁻ \rightarrow HCOO⁻ + H₂O
This removes the OH⁻ and so the pH remains approximately constant. (1 mark)
 $K_a = [HCO_3(aq)] = HCO_3(aq) + H^{+}(aq)$
 $pH \text{ of desired buffer = 7.40, so [H^{+}(aq)] = 10^{-7.40} = 3.98 \times 10^{-6} \text{ mol dm}^{-3}$ (1 mark)
 $K_a = [HCO_3(aq)] = K_a$ = $4.5 \times 10^{-7} \text{ mol dm}^{-3} = \frac{11.3}{1}$ (1 mark)
 $[H_2CO_3(aq)] = K_a$ = $4.5 \times 10^{-7} \text{ mol dm}^{-3} = \frac{11.3}{1}$ (1 mark)
 $[H_2CO_3(aq)] = K_a$ = $4.5 \times 10^{-7} \text{ mol dm}^{-3} = \frac{11.3}{1}$ (1 mark)
 $[H_2CO_3(aq)] = K_a$ = $4.5 \times 10^{-7} \text{ mol dm}^{-3} = \frac{11.3}{1}$ (2 mark)
 $[H_2CO_3(aq)] = K_a$ = $4.5 \times 10^{-7} \text{ mol dm}^{-3} = \frac{11.3}{1}$ (2 mark)
 $[H_2CO_3(aq)] = K_a$ = $4.5 \times 10^{-7} \text{ mol dm}^{-3} = \frac{11.3}{1}$ (2 mark)
 $[H_2CO_3(aq)] = K_a$ = $4.5 \times 10^{-7} \text{ mol dm}^{-3} = \frac{1}{1}$ (2 mark)
 $[H_2CO_3(aq)] = K_a$ = $4.5 \times 10^{-7} \text{ mol dm}^{-3} = \frac{1}{1}$ (2 mark)
 $[H_2CO_3(aq)] = K_a$ = $4.5 \times 10^{-7} \text{ mol dm}^{-3} = \frac{1}{1}$ (2 mark)
 $[H_2CO_3(aq)] = (K_a) = C_4 = CH_2CH_2COO^{-1} \text{ mol dm}^{-3} = \frac{1}{1}$ (2 mark)

Moles of NaOH =
$$0.015 \text{ dm}^3 \times 0.100 \text{ mol dm}^{-3} = 1.5 \times 10^{-3} \text{ mol}$$
 (1 mark)

 \therefore moles of CH₃CH₂COOH will decrease by 1.5×10^{-3} mol and moles of CH₃CH₂COO⁻Na⁺ will increase by 1.5×10^{-3} mol. (1 mark)

