A buffer solution is a solution that resists a change in pH when a small quantity of acid or base is added.

1. (a) A buffer solution is made by mixing 0.510 mol of methanoic acid with 0.450 mol of sodium methanoate in 500 cm3 of water.

 (i) Write an equation to represent the equilibrium established in the buffer solution.

 $\text{CH}_3COOH + \text{CH}_3COO^- \rightleftharpoons \text{H}_2\text{O} + \text{CH}_3COOH$ (1 mark)

 (ii) Calculate the pH of the buffer solution formed. (pK_a for methanoic acid = 3.75)

 $\text{pH} = \text{p}K_a + \log \frac{\text{[base]}}{\text{[acid]}}$
 $\text{pH} = 3.75 + \log \frac{\text{0.450 mol}}{\text{0.510 mol}}$ (3 marks)

 (b) Explain how this buffer resists change in pH on:

 (i) addition of a small quantity of acid.

 $\text{H}_2\text{O} + \text{CH}_3COOH \rightarrow \text{CH}_3COO^- + \text{H}_3\text{O}^+$ (1 mark)

 (ii) addition of a small quantity of base.

 $\text{H}_2\text{O} + \text{CH}_3COO^- \rightarrow \text{CH}_3COOH + \text{OH}^-$ (1 mark)

2. Mark and Karen are carrying out a science project on the application of buffer solutions in the human body. They have discovered that a buffer of carbonic acid (H_2CO_3) and hydrogen carbonate (HCO$_3^-$) is present in blood plasma to maintain a pH of between 7.35 and 7.45.

 (a) They would like to recreate a similar buffer solution in the laboratory. In what proportions should they mix 0.150 mol dm$^{-3}$ solutions of carbonic acid and sodium hydrogen carbonate to give a buffer solution with a pH of 7.40? (K_a for H$_2$CO$_3$ is 4.5×10^{-7} mol dm$^{-3}$).

 $\text{mol of carbonate} : \text{mol of bicarbonate} = \text{pH} : \text{p}K_a$ (2 marks)

 (b) Why do you think buffer solutions are needed in the human body?

 (2 marks)
3. Acids and bases answers

3.5. Buffer solutions

1. (a) (i) \(\text{HCOOH(aq)} \rightleftharpoons \text{HCOO}^- (aq) + \text{H}^+ (aq) \)

(ii) \(pK_a = -\log K_a \Rightarrow K_a = 10^{-3.75} = 1.78 \times 10^{-4} \text{ mol dm}^{-3} \)
 \[K_a = \frac{[\text{HCOO}^- (aq)][\text{H}^+ (aq)]}{[\text{HCOOH}(aq)]} \]
 \[[\text{HCOO}^- (aq)] = 0.450 \text{ mol / 0.5 dm}^3 = 0.90 \text{ mol dm}^{-3} \]
 \[[\text{HCOOH}(aq)] = 0.510 \text{ mol / 0.5 dm}^3 = 1.02 \text{ mol dm}^{-3} \]
 Substituting these values in we get, \(1.78 \times 10^{-4} \text{ mol dm}^{-3} = 0.90 \times [\text{H}^+(aq)] / 1.02 \)

 \(\therefore [\text{H}^+(aq)] = 2.02 \times 10^{-4} \text{ mol dm}^{-3} \)

 \(\therefore \text{pH} = 3.70 \)

(b) (i) On the addition of \(\text{H}^+ \) ions, according to Le Châtelier’s principle, the equilibrium shifts to the left to remove the extra \(\text{H}^+ \) ions added and maintain the pH approximately constant.

(ii) On the addition of \(\text{OH}^- \) ions, the \(\text{OH}^- \) ions react with the HCOOH to produce water molecules and more HCOO\(^-\); \(\text{HCOOH} + \text{OH}^- \rightarrow \text{HCOO}^- + \text{H}_2\text{O} \)

 This removes the \(\text{OH}^- \) and so the pH remains approximately constant.

2. (a) \(\text{H}_2\text{CO}_3(aq) \rightleftharpoons \text{HCO}_3^- (aq) + \text{H}^+ (aq) \)

 pH of desired buffer = 7.40, so \([\text{H}^+(aq)] = 10^{-7.40} = 3.98 \times 10^{-8} \text{ mol dm}^{-3} \)
 \[K_a = \frac{[\text{HCO}_3^-(aq)][\text{H}^+(aq)]}{[\text{H}_2\text{CO}_3(aq)]} \]

 \(\therefore [\text{HCO}_3^-(aq)] = K_a = 4.5 \times 10^{-7} \text{ mol dm}^{-3} = 11.3 \)

 Since both stock solutions are of an equal concentration they should mix the two in a ratio of \(11.3 : 1 \text{ HCO}_3^- : \text{H}_2\text{CO}_3 \)

(b) Many reactions in the human body rely on enzymes. Enzymes work only under very precise conditions. If the pH moves outside of a narrow range, the enzymes slow or stop working and can be denatured. Hence maintaining a constant pH is essential.

3.6. More complex buffer calculations

1. \(\text{CH}_3\text{CH}_2\text{COOH} + \text{NaOH} \rightarrow \text{CH}_3\text{CH}_2\text{COO}^-\text{Na}^+ + \text{H}_2\text{O} \)

 Moles of NaOH = 0.015 dm\(^3\) \times 0.100 \text{ mol dm}^{-3} = 1.5 \times 10^{-3} \text{ mol}

 \(\therefore \) moles of \(\text{CH}_3\text{CH}_2\text{COOH} \) will decrease by \(1.5 \times 10^{-3} \text{ mol} \) and moles of \(\text{CH}_3\text{CH}_2\text{COO}^-\text{Na}^+ \) will increase by \(1.5 \times 10^{-3} \text{ mol} \).