

3.6. More complex buffer calculations

Scientists wish to investigate whether certain bacteria can adapt to live in acidic conditions.

1.	The scientists make up a buffer solution, by mixing 15.0 cm ³ of a 0.100 mol dm ⁻³ aqueous solution of NaOH with 35.0 cm ³ of a 0.150 mol dm ⁻³ solution of propanoic acid. Calculate the pH of the buffer solution formed.					
	(K_a for propanoic acid has the value 1.35×10^{-5} mol dm ⁻³)					
	(4 marks)					
2.	The scientists wish to test if the solution formed is indeed a buffer solution and will resist change in pH on the addition of small quantities of acid or base possibly formed by the bacteria. They take two separate 10 cm ³ aliquots of the buffer solution formed in question 1. and add;					
	(a) 0.5 cm ³ of a 0.05 mol dm ⁻³ solution of hydrochloric acid to one of the aliquots, and					
	(b) 0.5 cm ³ of a 0.05 mol dm ⁻³ solution of calcium hydroxide to the other aliquot.					
	Calculate the pH of each of the new solutions formed.					
	(6 marks					
	(0 IIIalks					

3. Acids and bases answers

3.5. Buffer solutions

- 1. (a) (i) $HCOOH(aq) \rightleftharpoons HCOO^{-}(aq) + H^{+}(aq)$ (1 mark)
 - (ii) $pK_a = -\log K_a$, $\therefore K_a = 10^{-3.75} = 1.78 \times 10^{-4} \text{ mol dm}^{-3}$ (1 mark)

 $K_a = [HCOO^{-}(aq)][H^{+}(aq)]$ [HCOOH(aq)]

 $[HCOO^{-}(aq)] = 0.450 \text{ mol } / 0.5 \text{ dm}^{3} = 0.90 \text{ mol dm}^{-3}$

 $[HCOOH(aq)] = 0.510 \text{ mol } / 0.5 \text{ dm}^3 = 1.02 \text{ mol dm}^{-3}$

Substituting these values in we get, 1.78×10^{-4} mol dm⁻³ = $0.90 \times [H^{+}(aq)] / 1.02$

∴ $[H^{+}(aq)] = 2.02 \times 10^{-4} \text{ mol dm}^{-3}$

 $\therefore pH = 3.70 \tag{1 mark}$

- (b) (i) On the addition of H⁺ ions, according to Le Châtelier's principle, the equilibrium shifts to the left to remove the extra H⁺ ions added and maintain the pH approximately constant. (1 mark)
 - (ii) On the addition of OH⁻ ions, the OH⁻ ions react with the HCOOH to produce water molecules and more HCOO⁻;

HCOOH + OH⁻ → HCOO⁻ + H₂O

This removes the OH⁻ and so the pH remains approximately constant. (1 mark)

2. (a) $H_2CO_3(aq) \rightleftharpoons HCO_3^-(aq) + H^+(aq)$

pH of desired buffer = 7.40, so $[H^{+}(aq)] = 10^{-7.40} = 3.98 \times 10^{-8} \text{ mol dm}^{-3}$ (1 mark)

 $K_a = [HCO_3^-(aq)][H^+(aq)]$

[H₂CO₃(aq)]

 $\therefore [HCO_3^{-}(aq)] = K_a = \frac{4.5 \times 10^{-7} \text{ mol dm}^{-3}}{3.98 \times 10^{-8} \text{ mol dm}^{-3}} = \frac{11.3}{1}$ (1 mark)

Since both stock solutions are of an equal concentration they should mix the two in a ratio of $\underline{11.3:1\ HCO_3^-:H_2CO_3}$

(b) Many reactions in the human body rely on <u>enzymes</u>. Enzymes work only under very precise conditions. If the pH moves outside of a narrow range, the <u>enzymes slow or stop working and can</u> <u>be denatured</u>. Hence maintaining a constant pH is essential. (2 marks)

3.6. More complex buffer calculations

1. $CH_3CH_2COOH + NaOH \rightarrow CH_3CH_2COO^-Na^+ + H_2O$

Moles of NaOH = $0.015 \text{ dm}^3 \times 0.100 \text{ mol dm}^{-3} = 1.5 \times 10^{-3} \text{ mol}$

(1 mark)

(1 mark)

 \therefore moles of CH₃CH₂COOH will decrease by 1.5 \times 10⁻³ mol and moles of CH₃CH₂COO⁻Na⁺ will increase by 1.5 \times 10⁻³ mol. (1 mark)

3. Acids and bases answers

	CH₃CH₂COOH	\rightleftharpoons	CH₃CH₂COO⁻	+ H ⁺		
Initial moles	$0.035 \text{ dm}^3 \times 0.150 \text{ mol dm}^{-3}$ = $5.25 \times 10^{-3} \text{ mol}$		0 mol	0 mol		
Change in moles	$-~1.5\times10^{-3}~mol$		+ $1.5 \times 10^{-3} \text{mol}$?		
Equilibrium moles	$3.75\times10^{-3}\ mol$		$1.5 \times 10^{-3} \text{ mol}$?		
$K_{\rm a} = [{\rm CH_3CH_2COO^-}][{\rm H^+}] = (1.5 \times 10^{-3} \ {\rm mol} \ / \ 0.05 \ {\rm dm^3}) \times [{\rm H^+}] = 1.35 \times 10^{-5} \ {\rm mol} \ {\rm dm^{-3}}$						
[CH ₃ CH ₂ COO	(3.75 \times 10 ⁻³ mol / 0.05	dm ³)				
$\therefore [H^{+}] = 3.38 \times 10^{-5} \mathrm{mol} \mathrm{dm}^{-3}$						

∴ pH = 4.47

$$\therefore pH = 4.47 \tag{1 mark}$$

In a 10 cm³ aliquot (= 1/5 th) of the buffer solution made above;

moles of
$$CH_3CH_2COOH = 7.5 \times 10^{-4}$$
 mol; moles of $CH_3CH_2COO^- = 3.0 \times 10^{-4}$ mol (1 mark)

(a) No. of moles of acid added = $0.0005 \text{ dm}^3 \times 0.05 \text{ mol dm}^{-3} = 2.5 \times 10^{-5} \text{ mol}$

$$CH_3CH_2COO^- + H^+ \rightarrow CH_3CH_2COOH$$

∴ moles of CH₃CH₂COOH will increase by 2.5 × 10⁻⁵ mol and moles of CH₃CH₂COO⁻ will decrease by 2.5×10^{-5} mol. (1 mark)

	CH₃CH₂COOH	=	CH ₃ CH ₂ COO ⁻	+ H ⁺
Initial moles	$7.5 \times 10^{-4} \text{ mol}$		$3.0\times10^{-4}\ mol$	
Change in moles	+ 2.5×10^{-5} mol		$-~2.5\times10^{-5}~mol$?
Equilibrium moles	$7.75 \times 10^{-4} \text{mol}$		$2.75 \times 10^{-4} \text{ mol}$?

$$\therefore 1.35 \times 10^{-5} \,\text{mol dm}^{-3} = (2.75 \times 10^{-4} \,\text{mol } / \,0.0105 \,\text{dm}^3) \times [\text{H}^{+}]$$

$$(7.75 \times 10^{-4} \,\text{mol } / \,0.0105 \,\text{dm}^3)$$

$$\therefore$$
 [H⁺] = 3.80 × 10⁻⁵ mol dm⁻³

$$\therefore pH = 4.42 \tag{1 mark}$$

(b) No. of moles of Ca(OH)₂ added = $0.0005 \, \text{dm}^3 \times 0.05 \, \text{mol dm}^{-3} = 2.5 \times 10^{-5} \, \text{mol}$

∴ no. of moles of OH⁻ added =
$$2 \times 2.5 \times 10^{-5}$$
 mol = 5.0×10^{-5} mol (1 mark)

$$CH_{3}CH_{2}COOH + \ OH^{-} \ \rightarrow \ CH_{3}CH_{2}COO^{-} + \ H_{2}O$$

:. moles of CH₃CH₂COOH will decrease by 5.0 × 10⁻⁵ mol and moles of CH₃CH₂COO⁻ will increase by 5.0×10^{-5} mol. (1 mark)

3. Acids and bases answers

 CH_3CH_2COOH \rightleftharpoons $CH_3CH_2COO^-$ + H^+

Initial moles $7.5 \times 10^{-4} \text{ mol}$ $3.0 \times 10^{-4} \text{ mol}$

Change in moles $-5.0 \times 10^{-5} \text{ mol}$ + $5.0 \times 10^{-5} \text{ mol}$?

Equilibrium moles $7.0 \times 10^{-4} \text{ mol}$ $3.5 \times 10^{-4} \text{ mol}$?

 $\therefore~1.35\times10^{-5}\,\text{mol dm}^{-3}\,\text{=}\,~(3.5\times10^{-4}\;\text{mol}\;\text{/}\;0.0105\;\text{dm}^3)\times[\text{H}^{^{+}}]$

 $(7.0 \times 10^{-4} \text{ mol } / 0.0105 \text{ dm}^3)$

 $\therefore [H^{+}] = 2.7 \times 10^{-5} \text{ mol dm}^{-3}$

 $\therefore pH = 4.57 \tag{1 mark}$

