

1 Identify the Bronsted-Lowry acid in this reaction. $H_2O + HCO_3^- \rightarrow H_3O^+ + CO_3^{2-}$

HCO₃⁻

2 Calculate the pH of the solution formed when 50 cm³ of 0.400 mol dm⁻³ sulfuiric acid is added to 25 cm³ of 0.500 mol dm⁻³ sodium hydroxide solution

mol H⁺ = 2 x 0.400 x $\frac{50}{1000}$ = 0.0400 mol OH⁻ = 0.500 x $\frac{25}{1000}$ = 0.0125 XS mol H^+ = 0.0400 - 0.0125 = 0.0275 **XS** [**H**⁺] = $\frac{0.0275}{\frac{75}{1000}}$ = 0.367 $pH = -log[H^{+}] = -log 0.367 = 0.44$

Calculate the pH of the solution formed when 5.00 g of sodium hydroxide is dissolved in water to form 250 cm³ 3 of solution.

mol NaOH = $0.500 \times \frac{5.00}{40.0} = 0.125$ $[OH^-] = \frac{0.125}{\frac{250}{1000}} = 0.500$ $[H^+] = \frac{Kw}{[OH^-]} = \frac{10^{-14}}{0.500} = 2.0 \times 10^{-14}$ $pH = -log[H^+] = -log 2.0 \times 10^{-14} = 13.70$

4 Calculate the pH of water at 40°C given that $K_w = 2.92 \times 10^{-14}$. Explain whether the water is neutral.

 $[H^+] = \sqrt{K_w} = \sqrt{2.92 \times 10^{-14}} = 1.71 \times 10^{-7}$ $pH = -log[H^+] = -log 1.71 \times 10^{-7} = 6.77$