1 Find the pH of 0.20 mol dm<sup>-3</sup> ethanoic acid. (pK<sub>a</sub> = 4.76)

 $[H^{+}]^{2} = K_{a} [HA]$  $[H^{+}] = \sqrt{K_{a} [HA]} = \sqrt{10^{-4.76} \times 0.20} = 1.86 \times 10^{-3}$  $pH = -log[H^{+}] = -log 1.86 \times 10^{-3} = 2.73$ 

**2** Find the pH of a mixture of 20.0 cm<sup>3</sup> of 0.20 mol dm<sup>-3</sup> ethanoic acid and 50.0 cm<sup>3</sup> 0.10 mol dm<sup>-3</sup> sodium hydroxide. (pK<sub>a</sub> for ethanoic acid = 4.76)

ACIDS & BASES (E)

mol HA = 0.20 x  $\frac{20.0}{1000}$  = 0.00400 mol OH<sup>-</sup> = 0.10 x  $\frac{50.0}{1000}$  = 0.00500 XS mol OH<sup>-</sup> = 0.00500 - 0.00400 = 0.00100 XS mol [OH<sup>-</sup>] =  $\frac{0.00100}{\frac{70}{1000}}$  = 0.0143 [H<sup>+</sup>] =  $\frac{Kw}{[OH^-]}$  =  $\frac{10^{-14}}{0.0143}$  = 7.0 x 10<sup>-13</sup> pH = -log[H<sup>+</sup>] = -log 7.0 x 10<sup>-13</sup> = 12.15

**3** Sketch the pH curve to show how the pH changes as 50.0 cm<sup>3</sup> 0.10 mol dm<sup>-3</sup> sodium hydroxide is added to 20.0 cm<sup>3</sup> of 0.20 mol dm<sup>-3</sup> ethanoic acid. Mark on the volume of sodium hydroxide needed for equivalence.



- 4 What is an equivalence point? when moles of acid = moles of alkali
- 5 Estimate the pH at the equivalence point. pH > 7 (less than 10)
- 6 Identify a suitable indicator that changes colour at the equivalence point. phenolphthalein