GCSE

1 Complete the table with ticks to show whether each of the following is an acid, base, salt and/or alkali.

formula	name	acid	base	alkali	salt
CaO	calcium oxide		\checkmark		
$\mathrm{K}_{2} \mathrm{SO}_{4}$	potassium sulfate				\checkmark
KOH	potassium hydroxide		\checkmark	\checkmark	
HNO_{3}	nitric acid	\checkmark			
NH_{3}	ammonia		\checkmark	\checkmark	
AlCl_{3}	aluminium chloride				\checkmark

A sample of hydrochloric acid with pH 2.3 has a concentration of H^{+}ions of $0.0050 \mathrm{~mol} / \mathrm{dm}^{3}$. Water was added to dilute the acid which reduced the concentration of H^{+}ions to $0.00050 \mathrm{~mol} / \mathrm{dm}^{3}$. What is the pH of the diluted acid?

3.3

Ethanoic acid is a weak acid. Explain the terms acid and weak.
Acid $=$ substance that reacts with water to form H^{+}ions
Weak = acid where only a small fraction of the molecules react with water to form H^{+}ions

4 a Complete the word equation for each of the following reactions.
i sodium hydroxide + sulfuric acid \rightarrow sodium sulfate + water
ii copper carbonate + hydrochloric acid \rightarrow copper chloride + water + carbon dioxide
iii ammonia + nitric acid \rightarrow ammonium nitrate
iv zinc + sulfuric acid \rightarrow zinc sulfate + hydrogen
b Write an ionic equation for reaction (i) $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}$
c Which of the reactions in (a) are redox reactions? iv
d Which of the reactions in (a) are acid-base reactions? i, ii, iii
e Write balanced equations for the reactions in (a)
i $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
ii $\mathrm{CuCO}_{3}+2 \mathrm{HCl} \rightarrow \mathrm{CuCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
iii $\mathrm{NH}_{3}+\mathrm{HNO}_{3} \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}$
iv $\mathrm{Zn}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{ZnSO}_{4}+\mathrm{H}_{2}$

